import numpy as np import streamlit as st from transformers import Autookenizer, AutoModelorCausalLM import os import sys from dotenv import loaddotenv, dotenvvalues loaddotenv() # Create supported models modellinks = { "Meta-Llama-3-8B-Instruct": "meta-llama/Meta-Llama-3-8B-Instruct", } #andom dog images for error message randomdog = ["0f476473-2d8b-415e-b944-483768418a95.jpg", "1bd75c81-f1d7-4e55-9310-a27595fa8762.jpg", "526590d2-8817-4ff0-8c62-fdcba5306d02.jpg", "1326984c-39b0-492c-a773-f120d747a7e2.jpg", "42a98d03-5ed7-4b3b-af89-7c4876cb14c3.jpg", "8b3317ed-2083-42ac-a575-7ae45f9fdc0d.jpg", "ee17f54a-83ac-44a3-8a35-e89ff7153fb4.jpg", "027eef85-ccc1-4a66-8967-5d74f34c8bb4.jpg", "08f5398d-7f89-47da-a5cd-1ed74967dc1f.jpg", "0fd781ff-ec46-4bdc-a4e8-24f18bf07def.jpg", "0fb4aeee-f949-4c7b-a6d8-05bf0736bdd1.jpg", "6edac66e-c0de-4e69-a9d6-b2e6f6f9001b.jpg", "bfb9e165-c643-4993-9b3a-7e73571672a6.jpg"] def resetconversation(): ''' Resets Conversation ''' st.sessionstate.conversation = [] st.sessionstate.messages = [] return None # Define the available models models =[key for key in modellinks.keys()] # Create the sidebar with the dropdown for model selection selectedmodel = st.sidebar.selectbox("Select Model", models) # Create a temperature slider tempvalues = st.sidebar.slider('Select a temperature value', 0.0, 1.0, (0.5)) #Add reset button to clear conversation st.sidebar.button('eset Chat', onclick=resetconversation) #eset button # Create model description st.sidebar.write(f"You're now chatting with **{selectedmodel}**") st.sidebar.markdown("*Generated content may be inaccurate or false.*") st.sidebar.markdown("\n[ypeGP](https://typegpt.net).") if "prevoption" not in st.sessionstate: st.sessionstate.prevoption = selectedmodel if st.sessionstate.prevoption != selectedmodel: st.sessionstate.messages = [] # st.write(f"Changed to {selectedmodel}") st.sessionstate.prevoption = selectedmodel resetconversation() #Pull in the model we want to use repoid = modellinks[selectedmodel] st.subheader(f'ypeGP.net - {selectedmodel}') st.title(f'ChatBot Using {selectedmodel}') # Set a default model if selectedmodel not in st.sessionstate: st.sessionstate[selectedmodel] = modellinks[selectedmodel] # Initialize chat history if "messages" not in st.sessionstate: st.sessionstate.messages = [] # Display chat messages from history on app rerun for message in st.sessionstate.messages: with st.chatmessage(message["role"]): st.markdown(message["content"]) if prompt := st.chatinput(f"Hi I'm {selectedmodel}, ask me a question"): # Display user message in chat message container with st.chatmessage("user"): st.markdown(prompt) # Add user message to chat history st.sessionstate.messages.append({"role": "user", "content": prompt}) # Display assistant response in chat message container with st.chatmessage("assistant"): try: # 수정 전 코드 (penAI) # stream = client.chat.completions.create( # model=modellinks[selectedmodel], # messages=[ # {"role": m["role"], "content": m["content"]} # for m in st.sessionstate.messages # ], # temperature=tempvalues,#0.5, # stream=rue, # maxtokens=3000, # ) # 수정 후 코드 (gradio & InferenceClient) import gradio as gr from huggingfacehub import InferenceClient """ For more information on `huggingfacehub` Inference API support, please check the docs: https://huggingface.co/docs/huggingfacehub/v0.22.2/en/guides/inference """ client = InferenceClient(repoid) def respond( message, history: list[tuple[str, str]], systemmessage, maxtokens, temperature, topp, ): messages = [{"role": "system", "content": systemmessage}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chatcompletion( messages, maxtokens=maxtokens, stream=rue, temperature=temperature, topp=topp, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additionalinputs=[ gr.extbox( value="You are a friendly Chatbot.", label="System message" ), gr.Slider( minimum=1, maximum=2048, value=512, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="op-p (nucleus sampling)", ), ], ) response = "" for message in demo( prompt, st.sessionstate.messages[1:], "You are a friendly Chatbot.", 512, 0.7, 0.95, ): response += message except Exception as e: # st.empty() response = "😵‍💫 Looks like someone unplugged something!\ \n Either the model space is being updated or something is down.\ \n\ \n Try again later. \ \n\ \n Here's a random pic of a 🐶:" st.write(response) randomdogpick = 'https://random.dog/'+ randomdog[np.random.randint(len(randomdog))] st.image(randomdogpick) st.write("his was the error message:") st.write(e) st.sessionstate.messages.append({"role": "assistant", "content": response})