Spaces:
Sleeping
Sleeping
Priyanka-Kumavat
commited on
Commit
•
2f4d8e7
1
Parent(s):
0efd0cb
Upload 5 files
Browse files- .gitattributes +1 -0
- AajTak_Model.ipynb +2098 -0
- aajTak_model.pkl +3 -0
- input_raw_data.xlsx +3 -0
- timeBand_le.pkl +3 -0
- weekDay_le.pkl +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
input_raw_data.xlsx filter=lfs diff=lfs merge=lfs -text
|
AajTak_Model.ipynb
ADDED
@@ -0,0 +1,2098 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 1,
|
6 |
+
"id": "5849e5b1",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"# import required packages\n",
|
11 |
+
"\n",
|
12 |
+
"import pandas as pd\n",
|
13 |
+
"import numpy as np\n",
|
14 |
+
"import matplotlib as plt\n",
|
15 |
+
"import seaborn as sns\n",
|
16 |
+
"\n",
|
17 |
+
"from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split\n",
|
18 |
+
"from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor\n",
|
19 |
+
"from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n",
|
20 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
21 |
+
"\n",
|
22 |
+
"import warnings\n",
|
23 |
+
"warnings.filterwarnings('ignore')"
|
24 |
+
]
|
25 |
+
},
|
26 |
+
{
|
27 |
+
"cell_type": "markdown",
|
28 |
+
"id": "6b77e2c3",
|
29 |
+
"metadata": {},
|
30 |
+
"source": [
|
31 |
+
"## Preporcessing"
|
32 |
+
]
|
33 |
+
},
|
34 |
+
{
|
35 |
+
"cell_type": "code",
|
36 |
+
"execution_count": 2,
|
37 |
+
"id": "3725e933",
|
38 |
+
"metadata": {},
|
39 |
+
"outputs": [
|
40 |
+
{
|
41 |
+
"data": {
|
42 |
+
"text/html": [
|
43 |
+
"<div>\n",
|
44 |
+
"<style scoped>\n",
|
45 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
46 |
+
" vertical-align: middle;\n",
|
47 |
+
" }\n",
|
48 |
+
"\n",
|
49 |
+
" .dataframe tbody tr th {\n",
|
50 |
+
" vertical-align: top;\n",
|
51 |
+
" }\n",
|
52 |
+
"\n",
|
53 |
+
" .dataframe thead th {\n",
|
54 |
+
" text-align: right;\n",
|
55 |
+
" }\n",
|
56 |
+
"</style>\n",
|
57 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
58 |
+
" <thead>\n",
|
59 |
+
" <tr style=\"text-align: right;\">\n",
|
60 |
+
" <th></th>\n",
|
61 |
+
" <th>Unnamed: 0</th>\n",
|
62 |
+
" <th>Channel</th>\n",
|
63 |
+
" <th>Week Day</th>\n",
|
64 |
+
" <th>TimeBand</th>\n",
|
65 |
+
" <th>Share</th>\n",
|
66 |
+
" <th>AMA</th>\n",
|
67 |
+
" <th>rate</th>\n",
|
68 |
+
" <th>daily reach</th>\n",
|
69 |
+
" <th>cume reach</th>\n",
|
70 |
+
" <th>ATS</th>\n",
|
71 |
+
" <th>Unrolled</th>\n",
|
72 |
+
" </tr>\n",
|
73 |
+
" </thead>\n",
|
74 |
+
" <tbody>\n",
|
75 |
+
" <tr>\n",
|
76 |
+
" <th>0</th>\n",
|
77 |
+
" <td>7'23</td>\n",
|
78 |
+
" <td>Aaj Tak</td>\n",
|
79 |
+
" <td>Saturday</td>\n",
|
80 |
+
" <td>02:00:00 - 02:30:00</td>\n",
|
81 |
+
" <td>0.081305</td>\n",
|
82 |
+
" <td>0.123363</td>\n",
|
83 |
+
" <td>0.000433</td>\n",
|
84 |
+
" <td>3.70</td>\n",
|
85 |
+
" <td>3.700893</td>\n",
|
86 |
+
" <td>00:01:00</td>\n",
|
87 |
+
" <td>0.000000</td>\n",
|
88 |
+
" </tr>\n",
|
89 |
+
" <tr>\n",
|
90 |
+
" <th>1</th>\n",
|
91 |
+
" <td>7'23</td>\n",
|
92 |
+
" <td>Aaj Tak</td>\n",
|
93 |
+
" <td>Saturday</td>\n",
|
94 |
+
" <td>02:30:00 - 03:00:00</td>\n",
|
95 |
+
" <td>0.469995</td>\n",
|
96 |
+
" <td>0.394070</td>\n",
|
97 |
+
" <td>0.001383</td>\n",
|
98 |
+
" <td>11.82</td>\n",
|
99 |
+
" <td>11.822103</td>\n",
|
100 |
+
" <td>00:01:00</td>\n",
|
101 |
+
" <td>0.000000</td>\n",
|
102 |
+
" </tr>\n",
|
103 |
+
" <tr>\n",
|
104 |
+
" <th>2</th>\n",
|
105 |
+
" <td>7'23</td>\n",
|
106 |
+
" <td>Aaj Tak</td>\n",
|
107 |
+
" <td>Saturday</td>\n",
|
108 |
+
" <td>03:00:00 - 03:30:00</td>\n",
|
109 |
+
" <td>1.723084</td>\n",
|
110 |
+
" <td>0.361537</td>\n",
|
111 |
+
" <td>0.001269</td>\n",
|
112 |
+
" <td>10.85</td>\n",
|
113 |
+
" <td>10.846120</td>\n",
|
114 |
+
" <td>00:01:00</td>\n",
|
115 |
+
" <td>0.000000</td>\n",
|
116 |
+
" </tr>\n",
|
117 |
+
" <tr>\n",
|
118 |
+
" <th>3</th>\n",
|
119 |
+
" <td>7'23</td>\n",
|
120 |
+
" <td>Aaj Tak</td>\n",
|
121 |
+
" <td>Saturday</td>\n",
|
122 |
+
" <td>03:30:00 - 04:00:00</td>\n",
|
123 |
+
" <td>2.019206</td>\n",
|
124 |
+
" <td>0.251790</td>\n",
|
125 |
+
" <td>0.000884</td>\n",
|
126 |
+
" <td>7.55</td>\n",
|
127 |
+
" <td>7.553692</td>\n",
|
128 |
+
" <td>00:01:00</td>\n",
|
129 |
+
" <td>0.000000</td>\n",
|
130 |
+
" </tr>\n",
|
131 |
+
" <tr>\n",
|
132 |
+
" <th>4</th>\n",
|
133 |
+
" <td>7'23</td>\n",
|
134 |
+
" <td>Aaj Tak</td>\n",
|
135 |
+
" <td>Saturday</td>\n",
|
136 |
+
" <td>04:00:00 - 04:30:00</td>\n",
|
137 |
+
" <td>1.163916</td>\n",
|
138 |
+
" <td>0.333603</td>\n",
|
139 |
+
" <td>0.001171</td>\n",
|
140 |
+
" <td>10.01</td>\n",
|
141 |
+
" <td>10.008100</td>\n",
|
142 |
+
" <td>00:01:00</td>\n",
|
143 |
+
" <td>0.000000</td>\n",
|
144 |
+
" </tr>\n",
|
145 |
+
" <tr>\n",
|
146 |
+
" <th>...</th>\n",
|
147 |
+
" <td>...</td>\n",
|
148 |
+
" <td>...</td>\n",
|
149 |
+
" <td>...</td>\n",
|
150 |
+
" <td>...</td>\n",
|
151 |
+
" <td>...</td>\n",
|
152 |
+
" <td>...</td>\n",
|
153 |
+
" <td>...</td>\n",
|
154 |
+
" <td>...</td>\n",
|
155 |
+
" <td>...</td>\n",
|
156 |
+
" <td>...</td>\n",
|
157 |
+
" <td>...</td>\n",
|
158 |
+
" </tr>\n",
|
159 |
+
" <tr>\n",
|
160 |
+
" <th>12091</th>\n",
|
161 |
+
" <td>15'23</td>\n",
|
162 |
+
" <td>Aaj Tak</td>\n",
|
163 |
+
" <td>Friday</td>\n",
|
164 |
+
" <td>23:30:00 - 24:00:00</td>\n",
|
165 |
+
" <td>0.315975</td>\n",
|
166 |
+
" <td>6.315608</td>\n",
|
167 |
+
" <td>0.028382</td>\n",
|
168 |
+
" <td>52.33</td>\n",
|
169 |
+
" <td>52.334241</td>\n",
|
170 |
+
" <td>00:03:37</td>\n",
|
171 |
+
" <td>1.870176</td>\n",
|
172 |
+
" </tr>\n",
|
173 |
+
" <tr>\n",
|
174 |
+
" <th>12092</th>\n",
|
175 |
+
" <td>15'23</td>\n",
|
176 |
+
" <td>Aaj Tak</td>\n",
|
177 |
+
" <td>Friday</td>\n",
|
178 |
+
" <td>24:00:00 - 24:30:00</td>\n",
|
179 |
+
" <td>0.690376</td>\n",
|
180 |
+
" <td>8.010992</td>\n",
|
181 |
+
" <td>0.036001</td>\n",
|
182 |
+
" <td>33.65</td>\n",
|
183 |
+
" <td>33.651447</td>\n",
|
184 |
+
" <td>00:07:09</td>\n",
|
185 |
+
" <td>6.204409</td>\n",
|
186 |
+
" </tr>\n",
|
187 |
+
" <tr>\n",
|
188 |
+
" <th>12093</th>\n",
|
189 |
+
" <td>15'23</td>\n",
|
190 |
+
" <td>Aaj Tak</td>\n",
|
191 |
+
" <td>Friday</td>\n",
|
192 |
+
" <td>24:30:00 - 25:00:00</td>\n",
|
193 |
+
" <td>1.313761</td>\n",
|
194 |
+
" <td>8.575085</td>\n",
|
195 |
+
" <td>0.038536</td>\n",
|
196 |
+
" <td>26.97</td>\n",
|
197 |
+
" <td>26.974041</td>\n",
|
198 |
+
" <td>00:09:32</td>\n",
|
199 |
+
" <td>6.526442</td>\n",
|
200 |
+
" </tr>\n",
|
201 |
+
" <tr>\n",
|
202 |
+
" <th>12094</th>\n",
|
203 |
+
" <td>15'23</td>\n",
|
204 |
+
" <td>Aaj Tak</td>\n",
|
205 |
+
" <td>Friday</td>\n",
|
206 |
+
" <td>25:00:00 - 25:30:00</td>\n",
|
207 |
+
" <td>1.141046</td>\n",
|
208 |
+
" <td>4.483507</td>\n",
|
209 |
+
" <td>0.020149</td>\n",
|
210 |
+
" <td>37.21</td>\n",
|
211 |
+
" <td>37.214790</td>\n",
|
212 |
+
" <td>00:03:37</td>\n",
|
213 |
+
" <td>5.011646</td>\n",
|
214 |
+
" </tr>\n",
|
215 |
+
" <tr>\n",
|
216 |
+
" <th>12095</th>\n",
|
217 |
+
" <td>15'23</td>\n",
|
218 |
+
" <td>Aaj Tak</td>\n",
|
219 |
+
" <td>Friday</td>\n",
|
220 |
+
" <td>25:30:00 - 26:00:00</td>\n",
|
221 |
+
" <td>0.000000</td>\n",
|
222 |
+
" <td>0.000000</td>\n",
|
223 |
+
" <td>0.000000</td>\n",
|
224 |
+
" <td>0.00</td>\n",
|
225 |
+
" <td>0.000000</td>\n",
|
226 |
+
" <td>0</td>\n",
|
227 |
+
" <td>0.000000</td>\n",
|
228 |
+
" </tr>\n",
|
229 |
+
" </tbody>\n",
|
230 |
+
"</table>\n",
|
231 |
+
"<p>12096 rows × 11 columns</p>\n",
|
232 |
+
"</div>"
|
233 |
+
],
|
234 |
+
"text/plain": [
|
235 |
+
" Unnamed: 0 Channel Week Day TimeBand Share AMA \\\n",
|
236 |
+
"0 7'23 Aaj Tak Saturday 02:00:00 - 02:30:00 0.081305 0.123363 \n",
|
237 |
+
"1 7'23 Aaj Tak Saturday 02:30:00 - 03:00:00 0.469995 0.394070 \n",
|
238 |
+
"2 7'23 Aaj Tak Saturday 03:00:00 - 03:30:00 1.723084 0.361537 \n",
|
239 |
+
"3 7'23 Aaj Tak Saturday 03:30:00 - 04:00:00 2.019206 0.251790 \n",
|
240 |
+
"4 7'23 Aaj Tak Saturday 04:00:00 - 04:30:00 1.163916 0.333603 \n",
|
241 |
+
"... ... ... ... ... ... ... \n",
|
242 |
+
"12091 15'23 Aaj Tak Friday 23:30:00 - 24:00:00 0.315975 6.315608 \n",
|
243 |
+
"12092 15'23 Aaj Tak Friday 24:00:00 - 24:30:00 0.690376 8.010992 \n",
|
244 |
+
"12093 15'23 Aaj Tak Friday 24:30:00 - 25:00:00 1.313761 8.575085 \n",
|
245 |
+
"12094 15'23 Aaj Tak Friday 25:00:00 - 25:30:00 1.141046 4.483507 \n",
|
246 |
+
"12095 15'23 Aaj Tak Friday 25:30:00 - 26:00:00 0.000000 0.000000 \n",
|
247 |
+
"\n",
|
248 |
+
" rate daily reach cume reach ATS Unrolled \n",
|
249 |
+
"0 0.000433 3.70 3.700893 00:01:00 0.000000 \n",
|
250 |
+
"1 0.001383 11.82 11.822103 00:01:00 0.000000 \n",
|
251 |
+
"2 0.001269 10.85 10.846120 00:01:00 0.000000 \n",
|
252 |
+
"3 0.000884 7.55 7.553692 00:01:00 0.000000 \n",
|
253 |
+
"4 0.001171 10.01 10.008100 00:01:00 0.000000 \n",
|
254 |
+
"... ... ... ... ... ... \n",
|
255 |
+
"12091 0.028382 52.33 52.334241 00:03:37 1.870176 \n",
|
256 |
+
"12092 0.036001 33.65 33.651447 00:07:09 6.204409 \n",
|
257 |
+
"12093 0.038536 26.97 26.974041 00:09:32 6.526442 \n",
|
258 |
+
"12094 0.020149 37.21 37.214790 00:03:37 5.011646 \n",
|
259 |
+
"12095 0.000000 0.00 0.000000 0 0.000000 \n",
|
260 |
+
"\n",
|
261 |
+
"[12096 rows x 11 columns]"
|
262 |
+
]
|
263 |
+
},
|
264 |
+
"execution_count": 2,
|
265 |
+
"metadata": {},
|
266 |
+
"output_type": "execute_result"
|
267 |
+
}
|
268 |
+
],
|
269 |
+
"source": [
|
270 |
+
"# read the dataset\n",
|
271 |
+
"\n",
|
272 |
+
"df = pd.read_excel(\"input_raw_data.xlsx\")\n",
|
273 |
+
"df"
|
274 |
+
]
|
275 |
+
},
|
276 |
+
{
|
277 |
+
"cell_type": "code",
|
278 |
+
"execution_count": 3,
|
279 |
+
"id": "cc260fc7",
|
280 |
+
"metadata": {},
|
281 |
+
"outputs": [],
|
282 |
+
"source": [
|
283 |
+
"df.rename(columns={'Unnamed: 0':'Week number'}, inplace=True)"
|
284 |
+
]
|
285 |
+
},
|
286 |
+
{
|
287 |
+
"cell_type": "code",
|
288 |
+
"execution_count": 4,
|
289 |
+
"id": "bfee3282",
|
290 |
+
"metadata": {},
|
291 |
+
"outputs": [
|
292 |
+
{
|
293 |
+
"data": {
|
294 |
+
"text/html": [
|
295 |
+
"<div>\n",
|
296 |
+
"<style scoped>\n",
|
297 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
298 |
+
" vertical-align: middle;\n",
|
299 |
+
" }\n",
|
300 |
+
"\n",
|
301 |
+
" .dataframe tbody tr th {\n",
|
302 |
+
" vertical-align: top;\n",
|
303 |
+
" }\n",
|
304 |
+
"\n",
|
305 |
+
" .dataframe thead th {\n",
|
306 |
+
" text-align: right;\n",
|
307 |
+
" }\n",
|
308 |
+
"</style>\n",
|
309 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
310 |
+
" <thead>\n",
|
311 |
+
" <tr style=\"text-align: right;\">\n",
|
312 |
+
" <th></th>\n",
|
313 |
+
" <th>Week number</th>\n",
|
314 |
+
" <th>Channel</th>\n",
|
315 |
+
" <th>Week Day</th>\n",
|
316 |
+
" <th>TimeBand</th>\n",
|
317 |
+
" <th>Share</th>\n",
|
318 |
+
" <th>AMA</th>\n",
|
319 |
+
" <th>rate</th>\n",
|
320 |
+
" <th>daily reach</th>\n",
|
321 |
+
" <th>cume reach</th>\n",
|
322 |
+
" <th>ATS</th>\n",
|
323 |
+
" <th>Unrolled</th>\n",
|
324 |
+
" </tr>\n",
|
325 |
+
" </thead>\n",
|
326 |
+
" <tbody>\n",
|
327 |
+
" <tr>\n",
|
328 |
+
" <th>0</th>\n",
|
329 |
+
" <td>7'23</td>\n",
|
330 |
+
" <td>Aaj Tak</td>\n",
|
331 |
+
" <td>Saturday</td>\n",
|
332 |
+
" <td>02:00:00 - 02:30:00</td>\n",
|
333 |
+
" <td>0.081305</td>\n",
|
334 |
+
" <td>0.123363</td>\n",
|
335 |
+
" <td>0.000433</td>\n",
|
336 |
+
" <td>3.70</td>\n",
|
337 |
+
" <td>3.700893</td>\n",
|
338 |
+
" <td>00:01:00</td>\n",
|
339 |
+
" <td>0.0</td>\n",
|
340 |
+
" </tr>\n",
|
341 |
+
" <tr>\n",
|
342 |
+
" <th>1</th>\n",
|
343 |
+
" <td>7'23</td>\n",
|
344 |
+
" <td>Aaj Tak</td>\n",
|
345 |
+
" <td>Saturday</td>\n",
|
346 |
+
" <td>02:30:00 - 03:00:00</td>\n",
|
347 |
+
" <td>0.469995</td>\n",
|
348 |
+
" <td>0.394070</td>\n",
|
349 |
+
" <td>0.001383</td>\n",
|
350 |
+
" <td>11.82</td>\n",
|
351 |
+
" <td>11.822103</td>\n",
|
352 |
+
" <td>00:01:00</td>\n",
|
353 |
+
" <td>0.0</td>\n",
|
354 |
+
" </tr>\n",
|
355 |
+
" <tr>\n",
|
356 |
+
" <th>2</th>\n",
|
357 |
+
" <td>7'23</td>\n",
|
358 |
+
" <td>Aaj Tak</td>\n",
|
359 |
+
" <td>Saturday</td>\n",
|
360 |
+
" <td>03:00:00 - 03:30:00</td>\n",
|
361 |
+
" <td>1.723084</td>\n",
|
362 |
+
" <td>0.361537</td>\n",
|
363 |
+
" <td>0.001269</td>\n",
|
364 |
+
" <td>10.85</td>\n",
|
365 |
+
" <td>10.846120</td>\n",
|
366 |
+
" <td>00:01:00</td>\n",
|
367 |
+
" <td>0.0</td>\n",
|
368 |
+
" </tr>\n",
|
369 |
+
" <tr>\n",
|
370 |
+
" <th>3</th>\n",
|
371 |
+
" <td>7'23</td>\n",
|
372 |
+
" <td>Aaj Tak</td>\n",
|
373 |
+
" <td>Saturday</td>\n",
|
374 |
+
" <td>03:30:00 - 04:00:00</td>\n",
|
375 |
+
" <td>2.019206</td>\n",
|
376 |
+
" <td>0.251790</td>\n",
|
377 |
+
" <td>0.000884</td>\n",
|
378 |
+
" <td>7.55</td>\n",
|
379 |
+
" <td>7.553692</td>\n",
|
380 |
+
" <td>00:01:00</td>\n",
|
381 |
+
" <td>0.0</td>\n",
|
382 |
+
" </tr>\n",
|
383 |
+
" <tr>\n",
|
384 |
+
" <th>4</th>\n",
|
385 |
+
" <td>7'23</td>\n",
|
386 |
+
" <td>Aaj Tak</td>\n",
|
387 |
+
" <td>Saturday</td>\n",
|
388 |
+
" <td>04:00:00 - 04:30:00</td>\n",
|
389 |
+
" <td>1.163916</td>\n",
|
390 |
+
" <td>0.333603</td>\n",
|
391 |
+
" <td>0.001171</td>\n",
|
392 |
+
" <td>10.01</td>\n",
|
393 |
+
" <td>10.008100</td>\n",
|
394 |
+
" <td>00:01:00</td>\n",
|
395 |
+
" <td>0.0</td>\n",
|
396 |
+
" </tr>\n",
|
397 |
+
" </tbody>\n",
|
398 |
+
"</table>\n",
|
399 |
+
"</div>"
|
400 |
+
],
|
401 |
+
"text/plain": [
|
402 |
+
" Week number Channel Week Day TimeBand Share AMA \\\n",
|
403 |
+
"0 7'23 Aaj Tak Saturday 02:00:00 - 02:30:00 0.081305 0.123363 \n",
|
404 |
+
"1 7'23 Aaj Tak Saturday 02:30:00 - 03:00:00 0.469995 0.394070 \n",
|
405 |
+
"2 7'23 Aaj Tak Saturday 03:00:00 - 03:30:00 1.723084 0.361537 \n",
|
406 |
+
"3 7'23 Aaj Tak Saturday 03:30:00 - 04:00:00 2.019206 0.251790 \n",
|
407 |
+
"4 7'23 Aaj Tak Saturday 04:00:00 - 04:30:00 1.163916 0.333603 \n",
|
408 |
+
"\n",
|
409 |
+
" rate daily reach cume reach ATS Unrolled \n",
|
410 |
+
"0 0.000433 3.70 3.700893 00:01:00 0.0 \n",
|
411 |
+
"1 0.001383 11.82 11.822103 00:01:00 0.0 \n",
|
412 |
+
"2 0.001269 10.85 10.846120 00:01:00 0.0 \n",
|
413 |
+
"3 0.000884 7.55 7.553692 00:01:00 0.0 \n",
|
414 |
+
"4 0.001171 10.01 10.008100 00:01:00 0.0 "
|
415 |
+
]
|
416 |
+
},
|
417 |
+
"execution_count": 4,
|
418 |
+
"metadata": {},
|
419 |
+
"output_type": "execute_result"
|
420 |
+
}
|
421 |
+
],
|
422 |
+
"source": [
|
423 |
+
"df.head()"
|
424 |
+
]
|
425 |
+
},
|
426 |
+
{
|
427 |
+
"cell_type": "code",
|
428 |
+
"execution_count": 5,
|
429 |
+
"id": "e53ee7c9",
|
430 |
+
"metadata": {},
|
431 |
+
"outputs": [
|
432 |
+
{
|
433 |
+
"name": "stdout",
|
434 |
+
"output_type": "stream",
|
435 |
+
"text": [
|
436 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
437 |
+
"RangeIndex: 12096 entries, 0 to 12095\n",
|
438 |
+
"Data columns (total 11 columns):\n",
|
439 |
+
" # Column Non-Null Count Dtype \n",
|
440 |
+
"--- ------ -------------- ----- \n",
|
441 |
+
" 0 Week number 12096 non-null object \n",
|
442 |
+
" 1 Channel 12096 non-null object \n",
|
443 |
+
" 2 Week Day 12096 non-null object \n",
|
444 |
+
" 3 TimeBand 12096 non-null object \n",
|
445 |
+
" 4 Share 12096 non-null float64\n",
|
446 |
+
" 5 AMA 12096 non-null float64\n",
|
447 |
+
" 6 rate 12096 non-null float64\n",
|
448 |
+
" 7 daily reach 12096 non-null float64\n",
|
449 |
+
" 8 cume reach 12096 non-null float64\n",
|
450 |
+
" 9 ATS 12096 non-null object \n",
|
451 |
+
" 10 Unrolled 12096 non-null float64\n",
|
452 |
+
"dtypes: float64(6), object(5)\n",
|
453 |
+
"memory usage: 1.0+ MB\n"
|
454 |
+
]
|
455 |
+
}
|
456 |
+
],
|
457 |
+
"source": [
|
458 |
+
"df.info()"
|
459 |
+
]
|
460 |
+
},
|
461 |
+
{
|
462 |
+
"cell_type": "code",
|
463 |
+
"execution_count": 6,
|
464 |
+
"id": "31fd40e9",
|
465 |
+
"metadata": {},
|
466 |
+
"outputs": [
|
467 |
+
{
|
468 |
+
"data": {
|
469 |
+
"text/html": [
|
470 |
+
"<div>\n",
|
471 |
+
"<style scoped>\n",
|
472 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
473 |
+
" vertical-align: middle;\n",
|
474 |
+
" }\n",
|
475 |
+
"\n",
|
476 |
+
" .dataframe tbody tr th {\n",
|
477 |
+
" vertical-align: top;\n",
|
478 |
+
" }\n",
|
479 |
+
"\n",
|
480 |
+
" .dataframe thead th {\n",
|
481 |
+
" text-align: right;\n",
|
482 |
+
" }\n",
|
483 |
+
"</style>\n",
|
484 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
485 |
+
" <thead>\n",
|
486 |
+
" <tr style=\"text-align: right;\">\n",
|
487 |
+
" <th></th>\n",
|
488 |
+
" <th>Share</th>\n",
|
489 |
+
" <th>AMA</th>\n",
|
490 |
+
" <th>rate</th>\n",
|
491 |
+
" <th>daily reach</th>\n",
|
492 |
+
" <th>cume reach</th>\n",
|
493 |
+
" <th>Unrolled</th>\n",
|
494 |
+
" </tr>\n",
|
495 |
+
" </thead>\n",
|
496 |
+
" <tbody>\n",
|
497 |
+
" <tr>\n",
|
498 |
+
" <th>count</th>\n",
|
499 |
+
" <td>12096.000000</td>\n",
|
500 |
+
" <td>12096.000000</td>\n",
|
501 |
+
" <td>12096.000000</td>\n",
|
502 |
+
" <td>12096.000000</td>\n",
|
503 |
+
" <td>12096.000000</td>\n",
|
504 |
+
" <td>12096.000000</td>\n",
|
505 |
+
" </tr>\n",
|
506 |
+
" <tr>\n",
|
507 |
+
" <th>mean</th>\n",
|
508 |
+
" <td>0.904877</td>\n",
|
509 |
+
" <td>3.638381</td>\n",
|
510 |
+
" <td>0.031671</td>\n",
|
511 |
+
" <td>30.726294</td>\n",
|
512 |
+
" <td>30.726317</td>\n",
|
513 |
+
" <td>3.487959</td>\n",
|
514 |
+
" </tr>\n",
|
515 |
+
" <tr>\n",
|
516 |
+
" <th>std</th>\n",
|
517 |
+
" <td>3.773260</td>\n",
|
518 |
+
" <td>4.987969</td>\n",
|
519 |
+
" <td>0.074512</td>\n",
|
520 |
+
" <td>33.505783</td>\n",
|
521 |
+
" <td>33.505793</td>\n",
|
522 |
+
" <td>5.746293</td>\n",
|
523 |
+
" </tr>\n",
|
524 |
+
" <tr>\n",
|
525 |
+
" <th>min</th>\n",
|
526 |
+
" <td>0.000000</td>\n",
|
527 |
+
" <td>0.000000</td>\n",
|
528 |
+
" <td>0.000000</td>\n",
|
529 |
+
" <td>0.000000</td>\n",
|
530 |
+
" <td>0.000000</td>\n",
|
531 |
+
" <td>0.000000</td>\n",
|
532 |
+
" </tr>\n",
|
533 |
+
" <tr>\n",
|
534 |
+
" <th>25%</th>\n",
|
535 |
+
" <td>0.089353</td>\n",
|
536 |
+
" <td>0.122776</td>\n",
|
537 |
+
" <td>0.003831</td>\n",
|
538 |
+
" <td>3.000000</td>\n",
|
539 |
+
" <td>3.002531</td>\n",
|
540 |
+
" <td>0.000000</td>\n",
|
541 |
+
" </tr>\n",
|
542 |
+
" <tr>\n",
|
543 |
+
" <th>50%</th>\n",
|
544 |
+
" <td>0.199747</td>\n",
|
545 |
+
" <td>2.192741</td>\n",
|
546 |
+
" <td>0.015068</td>\n",
|
547 |
+
" <td>22.730000</td>\n",
|
548 |
+
" <td>22.732177</td>\n",
|
549 |
+
" <td>0.974788</td>\n",
|
550 |
+
" </tr>\n",
|
551 |
+
" <tr>\n",
|
552 |
+
" <th>75%</th>\n",
|
553 |
+
" <td>0.482635</td>\n",
|
554 |
+
" <td>5.174398</td>\n",
|
555 |
+
" <td>0.029070</td>\n",
|
556 |
+
" <td>46.930000</td>\n",
|
557 |
+
" <td>46.932208</td>\n",
|
558 |
+
" <td>4.620285</td>\n",
|
559 |
+
" </tr>\n",
|
560 |
+
" <tr>\n",
|
561 |
+
" <th>max</th>\n",
|
562 |
+
" <td>100.000000</td>\n",
|
563 |
+
" <td>42.072407</td>\n",
|
564 |
+
" <td>1.356598</td>\n",
|
565 |
+
" <td>229.330000</td>\n",
|
566 |
+
" <td>229.334577</td>\n",
|
567 |
+
" <td>60.765814</td>\n",
|
568 |
+
" </tr>\n",
|
569 |
+
" </tbody>\n",
|
570 |
+
"</table>\n",
|
571 |
+
"</div>"
|
572 |
+
],
|
573 |
+
"text/plain": [
|
574 |
+
" Share AMA rate daily reach cume reach \\\n",
|
575 |
+
"count 12096.000000 12096.000000 12096.000000 12096.000000 12096.000000 \n",
|
576 |
+
"mean 0.904877 3.638381 0.031671 30.726294 30.726317 \n",
|
577 |
+
"std 3.773260 4.987969 0.074512 33.505783 33.505793 \n",
|
578 |
+
"min 0.000000 0.000000 0.000000 0.000000 0.000000 \n",
|
579 |
+
"25% 0.089353 0.122776 0.003831 3.000000 3.002531 \n",
|
580 |
+
"50% 0.199747 2.192741 0.015068 22.730000 22.732177 \n",
|
581 |
+
"75% 0.482635 5.174398 0.029070 46.930000 46.932208 \n",
|
582 |
+
"max 100.000000 42.072407 1.356598 229.330000 229.334577 \n",
|
583 |
+
"\n",
|
584 |
+
" Unrolled \n",
|
585 |
+
"count 12096.000000 \n",
|
586 |
+
"mean 3.487959 \n",
|
587 |
+
"std 5.746293 \n",
|
588 |
+
"min 0.000000 \n",
|
589 |
+
"25% 0.000000 \n",
|
590 |
+
"50% 0.974788 \n",
|
591 |
+
"75% 4.620285 \n",
|
592 |
+
"max 60.765814 "
|
593 |
+
]
|
594 |
+
},
|
595 |
+
"execution_count": 6,
|
596 |
+
"metadata": {},
|
597 |
+
"output_type": "execute_result"
|
598 |
+
}
|
599 |
+
],
|
600 |
+
"source": [
|
601 |
+
"df.describe()"
|
602 |
+
]
|
603 |
+
},
|
604 |
+
{
|
605 |
+
"cell_type": "code",
|
606 |
+
"execution_count": 7,
|
607 |
+
"id": "741765e3",
|
608 |
+
"metadata": {},
|
609 |
+
"outputs": [
|
610 |
+
{
|
611 |
+
"data": {
|
612 |
+
"text/plain": [
|
613 |
+
"Week number\n",
|
614 |
+
"7'23 1344\n",
|
615 |
+
"8'23 1344\n",
|
616 |
+
"9'23 1344\n",
|
617 |
+
"10'23 1344\n",
|
618 |
+
"11'23 1344\n",
|
619 |
+
"12'23 1344\n",
|
620 |
+
"13'23 1344\n",
|
621 |
+
"14'23 1344\n",
|
622 |
+
"15'23 1344\n",
|
623 |
+
"Name: count, dtype: int64"
|
624 |
+
]
|
625 |
+
},
|
626 |
+
"execution_count": 7,
|
627 |
+
"metadata": {},
|
628 |
+
"output_type": "execute_result"
|
629 |
+
}
|
630 |
+
],
|
631 |
+
"source": [
|
632 |
+
"# Count values of Week number\n",
|
633 |
+
"df['Week number'].value_counts() # we have records of from 7 to 15"
|
634 |
+
]
|
635 |
+
},
|
636 |
+
{
|
637 |
+
"cell_type": "code",
|
638 |
+
"execution_count": 8,
|
639 |
+
"id": "894d2430",
|
640 |
+
"metadata": {},
|
641 |
+
"outputs": [
|
642 |
+
{
|
643 |
+
"data": {
|
644 |
+
"text/plain": [
|
645 |
+
"Channel\n",
|
646 |
+
"Aaj Tak 12096\n",
|
647 |
+
"Name: count, dtype: int64"
|
648 |
+
]
|
649 |
+
},
|
650 |
+
"execution_count": 8,
|
651 |
+
"metadata": {},
|
652 |
+
"output_type": "execute_result"
|
653 |
+
}
|
654 |
+
],
|
655 |
+
"source": [
|
656 |
+
"# Count values of Channel\n",
|
657 |
+
"df['Channel'].value_counts()"
|
658 |
+
]
|
659 |
+
},
|
660 |
+
{
|
661 |
+
"cell_type": "code",
|
662 |
+
"execution_count": 9,
|
663 |
+
"id": "abbc65aa",
|
664 |
+
"metadata": {},
|
665 |
+
"outputs": [
|
666 |
+
{
|
667 |
+
"data": {
|
668 |
+
"text/plain": [
|
669 |
+
"Week Day\n",
|
670 |
+
"Saturday 1728\n",
|
671 |
+
"Sunday 1728\n",
|
672 |
+
"Monday 1728\n",
|
673 |
+
"Tuesday 1728\n",
|
674 |
+
"Wednesday 1728\n",
|
675 |
+
"Thursday 1728\n",
|
676 |
+
"Friday 1728\n",
|
677 |
+
"Name: count, dtype: int64"
|
678 |
+
]
|
679 |
+
},
|
680 |
+
"execution_count": 9,
|
681 |
+
"metadata": {},
|
682 |
+
"output_type": "execute_result"
|
683 |
+
}
|
684 |
+
],
|
685 |
+
"source": [
|
686 |
+
"# Count values of Week Day\n",
|
687 |
+
"df['Week Day'].value_counts() # from Sunday to Monday"
|
688 |
+
]
|
689 |
+
},
|
690 |
+
{
|
691 |
+
"cell_type": "code",
|
692 |
+
"execution_count": 10,
|
693 |
+
"id": "24a0ea3a",
|
694 |
+
"metadata": {},
|
695 |
+
"outputs": [
|
696 |
+
{
|
697 |
+
"data": {
|
698 |
+
"text/plain": [
|
699 |
+
"TimeBand\n",
|
700 |
+
"02:00:00 - 02:30:00 252\n",
|
701 |
+
"02:30:00 - 03:00:00 252\n",
|
702 |
+
"15:00:00 - 15:30:00 252\n",
|
703 |
+
"15:30:00 - 16:00:00 252\n",
|
704 |
+
"16:00:00 - 16:30:00 252\n",
|
705 |
+
"16:30:00 - 17:00:00 252\n",
|
706 |
+
"17:00:00 - 17:30:00 252\n",
|
707 |
+
"17:30:00 - 18:00:00 252\n",
|
708 |
+
"18:00:00 - 18:30:00 252\n",
|
709 |
+
"18:30:00 - 19:00:00 252\n",
|
710 |
+
"19:00:00 - 19:30:00 252\n",
|
711 |
+
"19:30:00 - 20:00:00 252\n",
|
712 |
+
"20:00:00 - 20:30:00 252\n",
|
713 |
+
"20:30:00 - 21:00:00 252\n",
|
714 |
+
"21:00:00 - 21:30:00 252\n",
|
715 |
+
"21:30:00 - 22:00:00 252\n",
|
716 |
+
"22:00:00 - 22:30:00 252\n",
|
717 |
+
"22:30:00 - 23:00:00 252\n",
|
718 |
+
"23:00:00 - 23:30:00 252\n",
|
719 |
+
"23:30:00 - 24:00:00 252\n",
|
720 |
+
"24:00:00 - 24:30:00 252\n",
|
721 |
+
"24:30:00 - 25:00:00 252\n",
|
722 |
+
"25:00:00 - 25:30:00 252\n",
|
723 |
+
"14:30:00 - 15:00:00 252\n",
|
724 |
+
"14:00:00 - 14:30:00 252\n",
|
725 |
+
"13:30:00 - 14:00:00 252\n",
|
726 |
+
"07:30:00 - 08:00:00 252\n",
|
727 |
+
"03:00:00 - 03:30:00 252\n",
|
728 |
+
"03:30:00 - 04:00:00 252\n",
|
729 |
+
"04:00:00 - 04:30:00 252\n",
|
730 |
+
"04:30:00 - 05:00:00 252\n",
|
731 |
+
"05:00:00 - 05:30:00 252\n",
|
732 |
+
"05:30:00 - 06:00:00 252\n",
|
733 |
+
"06:00:00 - 06:30:00 252\n",
|
734 |
+
"06:30:00 - 07:00:00 252\n",
|
735 |
+
"07:00:00 - 07:30:00 252\n",
|
736 |
+
"08:00:00 - 08:30:00 252\n",
|
737 |
+
"13:00:00 - 13:30:00 252\n",
|
738 |
+
"08:30:00 - 09:00:00 252\n",
|
739 |
+
"09:00:00 - 09:30:00 252\n",
|
740 |
+
"09:30:00 - 10:00:00 252\n",
|
741 |
+
"10:00:00 - 10:30:00 252\n",
|
742 |
+
"10:30:00 - 11:00:00 252\n",
|
743 |
+
"11:00:00 - 11:30:00 252\n",
|
744 |
+
"11:30:00 - 12:00:00 252\n",
|
745 |
+
"12:00:00 - 12:30:00 252\n",
|
746 |
+
"12:30:00 - 13:00:00 252\n",
|
747 |
+
"25:30:00 - 26:00:00 252\n",
|
748 |
+
"Name: count, dtype: int64"
|
749 |
+
]
|
750 |
+
},
|
751 |
+
"execution_count": 10,
|
752 |
+
"metadata": {},
|
753 |
+
"output_type": "execute_result"
|
754 |
+
}
|
755 |
+
],
|
756 |
+
"source": [
|
757 |
+
"# count values of TimeBand\n",
|
758 |
+
"df['TimeBand'].value_counts()"
|
759 |
+
]
|
760 |
+
},
|
761 |
+
{
|
762 |
+
"cell_type": "markdown",
|
763 |
+
"id": "be8183bd",
|
764 |
+
"metadata": {},
|
765 |
+
"source": [
|
766 |
+
"## Label Encoding"
|
767 |
+
]
|
768 |
+
},
|
769 |
+
{
|
770 |
+
"cell_type": "code",
|
771 |
+
"execution_count": 11,
|
772 |
+
"id": "877e32b9",
|
773 |
+
"metadata": {},
|
774 |
+
"outputs": [
|
775 |
+
{
|
776 |
+
"data": {
|
777 |
+
"text/plain": [
|
778 |
+
"Index(['Week number', 'Channel', 'Week Day', 'TimeBand', 'Share', 'AMA',\n",
|
779 |
+
" 'rate', 'daily reach', 'cume reach', 'ATS', 'Unrolled'],\n",
|
780 |
+
" dtype='object')"
|
781 |
+
]
|
782 |
+
},
|
783 |
+
"execution_count": 11,
|
784 |
+
"metadata": {},
|
785 |
+
"output_type": "execute_result"
|
786 |
+
}
|
787 |
+
],
|
788 |
+
"source": [
|
789 |
+
"df.columns"
|
790 |
+
]
|
791 |
+
},
|
792 |
+
{
|
793 |
+
"cell_type": "code",
|
794 |
+
"execution_count": 12,
|
795 |
+
"id": "9f922296",
|
796 |
+
"metadata": {},
|
797 |
+
"outputs": [
|
798 |
+
{
|
799 |
+
"name": "stdout",
|
800 |
+
"output_type": "stream",
|
801 |
+
"text": [
|
802 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
803 |
+
"RangeIndex: 12096 entries, 0 to 12095\n",
|
804 |
+
"Data columns (total 11 columns):\n",
|
805 |
+
" # Column Non-Null Count Dtype \n",
|
806 |
+
"--- ------ -------------- ----- \n",
|
807 |
+
" 0 Week number 12096 non-null object \n",
|
808 |
+
" 1 Channel 12096 non-null object \n",
|
809 |
+
" 2 Week Day 12096 non-null object \n",
|
810 |
+
" 3 TimeBand 12096 non-null object \n",
|
811 |
+
" 4 Share 12096 non-null float64\n",
|
812 |
+
" 5 AMA 12096 non-null float64\n",
|
813 |
+
" 6 rate 12096 non-null float64\n",
|
814 |
+
" 7 daily reach 12096 non-null float64\n",
|
815 |
+
" 8 cume reach 12096 non-null float64\n",
|
816 |
+
" 9 ATS 12096 non-null object \n",
|
817 |
+
" 10 Unrolled 12096 non-null float64\n",
|
818 |
+
"dtypes: float64(6), object(5)\n",
|
819 |
+
"memory usage: 1.0+ MB\n"
|
820 |
+
]
|
821 |
+
}
|
822 |
+
],
|
823 |
+
"source": [
|
824 |
+
"df.info()"
|
825 |
+
]
|
826 |
+
},
|
827 |
+
{
|
828 |
+
"cell_type": "code",
|
829 |
+
"execution_count": 13,
|
830 |
+
"id": "109ffb8d",
|
831 |
+
"metadata": {},
|
832 |
+
"outputs": [],
|
833 |
+
"source": [
|
834 |
+
"# Need to Label Encode columns like: \n",
|
835 |
+
"# As of now Channel is not needed to encode as we are checking with AajTak only\n",
|
836 |
+
"# 1: Week Day\n",
|
837 |
+
"# 2: TimeBand"
|
838 |
+
]
|
839 |
+
},
|
840 |
+
{
|
841 |
+
"cell_type": "code",
|
842 |
+
"execution_count": 14,
|
843 |
+
"id": "e4fd0b0b",
|
844 |
+
"metadata": {},
|
845 |
+
"outputs": [],
|
846 |
+
"source": [
|
847 |
+
"# 1: Week Day\n",
|
848 |
+
"\n",
|
849 |
+
"weekDay_le = LabelEncoder()\n",
|
850 |
+
"df['Week_Day_Encoded'] = weekDay_le.fit_transform(df['Week Day'])"
|
851 |
+
]
|
852 |
+
},
|
853 |
+
{
|
854 |
+
"cell_type": "code",
|
855 |
+
"execution_count": 15,
|
856 |
+
"id": "9b10dc13",
|
857 |
+
"metadata": {},
|
858 |
+
"outputs": [],
|
859 |
+
"source": [
|
860 |
+
"# L1 = list(weekDay_le.inverse_transform(df['Week_Day_Encoded']))\n",
|
861 |
+
"# d1 = dict(zip(weekDay_le.classes_, weekDay_le.transform(weekDay_le.classes_)))\n",
|
862 |
+
"# print (d1)\n",
|
863 |
+
"\n",
|
864 |
+
"# # Output: {'Friday': 0, 'Monday': 1, 'Saturday': 2, 'Sunday': 3, 'Thursday': 4, 'Tuesday': 5, 'Wednesday': 6}"
|
865 |
+
]
|
866 |
+
},
|
867 |
+
{
|
868 |
+
"cell_type": "code",
|
869 |
+
"execution_count": 16,
|
870 |
+
"id": "bc705800",
|
871 |
+
"metadata": {},
|
872 |
+
"outputs": [],
|
873 |
+
"source": [
|
874 |
+
"# 2: TimeBand\n",
|
875 |
+
"\n",
|
876 |
+
"timeBand_le = LabelEncoder()\n",
|
877 |
+
"df['Time_Band_Encoded'] = timeBand_le.fit_transform(df['TimeBand'])"
|
878 |
+
]
|
879 |
+
},
|
880 |
+
{
|
881 |
+
"cell_type": "code",
|
882 |
+
"execution_count": 17,
|
883 |
+
"id": "16ac2be3",
|
884 |
+
"metadata": {},
|
885 |
+
"outputs": [],
|
886 |
+
"source": [
|
887 |
+
"# L2 = list(timeBand_le.inverse_transform(df['Time_Band_Encoded']))\n",
|
888 |
+
"# d2 = dict(zip(timeBand_le.classes_, timeBand_le.transform(timeBand_le.classes_)))\n",
|
889 |
+
"# print(d2)\n",
|
890 |
+
"\n",
|
891 |
+
"# # # Output: {'02:00:00 - 02:30:00': 0, '02:30:00 - 03:00:00': 1, '03:00:00 - 03:30:00': 2, '03:30:00 - 04:00:00': 3, \n",
|
892 |
+
"# '04:00:00 - 04:30:00': 4, '04:30:00 - 05:00:00': 5, '05:00:00 - 05:30:00': 6, '05:30:00 - 06:00:00': 7, \n",
|
893 |
+
"# '06:00:00 - 06:30:00': 8, '06:30:00 - 07:00:00': 9, '07:00:00 - 07:30:00': 10, '07:30:00 - 08:00:00': 11, \n",
|
894 |
+
"# '08:00:00 - 08:30:00': 12, '08:30:00 - 09:00:00': 13, '09:00:00 - 09:30:00': 14, '09:30:00 - 10:00:00': 15, \n",
|
895 |
+
"# '10:00:00 - 10:30:00': 16, '10:30:00 - 11:00:00': 17, '11:00:00 - 11:30:00': 18, '11:30:00 - 12:00:00': 19, \n",
|
896 |
+
"# '12:00:00 - 12:30:00': 20, '12:30:00 - 13:00:00': 21, '13:00:00 - 13:30:00': 22, '13:30:00 - 14:00:00': 23, \n",
|
897 |
+
"# '14:00:00 - 14:30:00': 24, '14:30:00 - 15:00:00': 25, '15:00:00 - 15:30:00': 26, '15:30:00 - 16:00:00': 27, \n",
|
898 |
+
"# '16:00:00 - 16:30:00': 28, '16:30:00 - 17:00:00': 29, '17:00:00 - 17:30:00': 30, '17:30:00 - 18:00:00': 31, \n",
|
899 |
+
"# '18:00:00 - 18:30:00': 32, '18:30:00 - 19:00:00': 33, '19:00:00 - 19:30:00': 34, '19:30:00 - 20:00:00': 35, \n",
|
900 |
+
"# '20:00:00 - 20:30:00': 36, '20:30:00 - 21:00:00': 37, '21:00:00 - 21:30:00': 38, '21:30:00 - 22:00:00': 39, \n",
|
901 |
+
"# '22:00:00 - 22:30:00': 40, '22:30:00 - 23:00:00': 41, '23:00:00 - 23:30:00': 42, '23:30:00 - 24:00:00': 43, \n",
|
902 |
+
"# '24:00:00 - 24:30:00': 44, '24:30:00 - 25:00:00': 45, '25:00:00 - 25:30:00': 46, '25:30:00 - 26:00:00': 47}"
|
903 |
+
]
|
904 |
+
},
|
905 |
+
{
|
906 |
+
"cell_type": "code",
|
907 |
+
"execution_count": 18,
|
908 |
+
"id": "e65f3a9b",
|
909 |
+
"metadata": {},
|
910 |
+
"outputs": [
|
911 |
+
{
|
912 |
+
"data": {
|
913 |
+
"text/html": [
|
914 |
+
"<div>\n",
|
915 |
+
"<style scoped>\n",
|
916 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
917 |
+
" vertical-align: middle;\n",
|
918 |
+
" }\n",
|
919 |
+
"\n",
|
920 |
+
" .dataframe tbody tr th {\n",
|
921 |
+
" vertical-align: top;\n",
|
922 |
+
" }\n",
|
923 |
+
"\n",
|
924 |
+
" .dataframe thead th {\n",
|
925 |
+
" text-align: right;\n",
|
926 |
+
" }\n",
|
927 |
+
"</style>\n",
|
928 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
929 |
+
" <thead>\n",
|
930 |
+
" <tr style=\"text-align: right;\">\n",
|
931 |
+
" <th></th>\n",
|
932 |
+
" <th>Week number</th>\n",
|
933 |
+
" <th>Channel</th>\n",
|
934 |
+
" <th>Week Day</th>\n",
|
935 |
+
" <th>TimeBand</th>\n",
|
936 |
+
" <th>Share</th>\n",
|
937 |
+
" <th>AMA</th>\n",
|
938 |
+
" <th>rate</th>\n",
|
939 |
+
" <th>daily reach</th>\n",
|
940 |
+
" <th>cume reach</th>\n",
|
941 |
+
" <th>ATS</th>\n",
|
942 |
+
" <th>Unrolled</th>\n",
|
943 |
+
" <th>Week_Day_Encoded</th>\n",
|
944 |
+
" <th>Time_Band_Encoded</th>\n",
|
945 |
+
" </tr>\n",
|
946 |
+
" </thead>\n",
|
947 |
+
" <tbody>\n",
|
948 |
+
" <tr>\n",
|
949 |
+
" <th>0</th>\n",
|
950 |
+
" <td>7'23</td>\n",
|
951 |
+
" <td>Aaj Tak</td>\n",
|
952 |
+
" <td>Saturday</td>\n",
|
953 |
+
" <td>02:00:00 - 02:30:00</td>\n",
|
954 |
+
" <td>0.081305</td>\n",
|
955 |
+
" <td>0.123363</td>\n",
|
956 |
+
" <td>0.000433</td>\n",
|
957 |
+
" <td>3.70</td>\n",
|
958 |
+
" <td>3.700893</td>\n",
|
959 |
+
" <td>00:01:00</td>\n",
|
960 |
+
" <td>0.0</td>\n",
|
961 |
+
" <td>2</td>\n",
|
962 |
+
" <td>0</td>\n",
|
963 |
+
" </tr>\n",
|
964 |
+
" <tr>\n",
|
965 |
+
" <th>1</th>\n",
|
966 |
+
" <td>7'23</td>\n",
|
967 |
+
" <td>Aaj Tak</td>\n",
|
968 |
+
" <td>Saturday</td>\n",
|
969 |
+
" <td>02:30:00 - 03:00:00</td>\n",
|
970 |
+
" <td>0.469995</td>\n",
|
971 |
+
" <td>0.394070</td>\n",
|
972 |
+
" <td>0.001383</td>\n",
|
973 |
+
" <td>11.82</td>\n",
|
974 |
+
" <td>11.822103</td>\n",
|
975 |
+
" <td>00:01:00</td>\n",
|
976 |
+
" <td>0.0</td>\n",
|
977 |
+
" <td>2</td>\n",
|
978 |
+
" <td>1</td>\n",
|
979 |
+
" </tr>\n",
|
980 |
+
" <tr>\n",
|
981 |
+
" <th>2</th>\n",
|
982 |
+
" <td>7'23</td>\n",
|
983 |
+
" <td>Aaj Tak</td>\n",
|
984 |
+
" <td>Saturday</td>\n",
|
985 |
+
" <td>03:00:00 - 03:30:00</td>\n",
|
986 |
+
" <td>1.723084</td>\n",
|
987 |
+
" <td>0.361537</td>\n",
|
988 |
+
" <td>0.001269</td>\n",
|
989 |
+
" <td>10.85</td>\n",
|
990 |
+
" <td>10.846120</td>\n",
|
991 |
+
" <td>00:01:00</td>\n",
|
992 |
+
" <td>0.0</td>\n",
|
993 |
+
" <td>2</td>\n",
|
994 |
+
" <td>2</td>\n",
|
995 |
+
" </tr>\n",
|
996 |
+
" <tr>\n",
|
997 |
+
" <th>3</th>\n",
|
998 |
+
" <td>7'23</td>\n",
|
999 |
+
" <td>Aaj Tak</td>\n",
|
1000 |
+
" <td>Saturday</td>\n",
|
1001 |
+
" <td>03:30:00 - 04:00:00</td>\n",
|
1002 |
+
" <td>2.019206</td>\n",
|
1003 |
+
" <td>0.251790</td>\n",
|
1004 |
+
" <td>0.000884</td>\n",
|
1005 |
+
" <td>7.55</td>\n",
|
1006 |
+
" <td>7.553692</td>\n",
|
1007 |
+
" <td>00:01:00</td>\n",
|
1008 |
+
" <td>0.0</td>\n",
|
1009 |
+
" <td>2</td>\n",
|
1010 |
+
" <td>3</td>\n",
|
1011 |
+
" </tr>\n",
|
1012 |
+
" <tr>\n",
|
1013 |
+
" <th>4</th>\n",
|
1014 |
+
" <td>7'23</td>\n",
|
1015 |
+
" <td>Aaj Tak</td>\n",
|
1016 |
+
" <td>Saturday</td>\n",
|
1017 |
+
" <td>04:00:00 - 04:30:00</td>\n",
|
1018 |
+
" <td>1.163916</td>\n",
|
1019 |
+
" <td>0.333603</td>\n",
|
1020 |
+
" <td>0.001171</td>\n",
|
1021 |
+
" <td>10.01</td>\n",
|
1022 |
+
" <td>10.008100</td>\n",
|
1023 |
+
" <td>00:01:00</td>\n",
|
1024 |
+
" <td>0.0</td>\n",
|
1025 |
+
" <td>2</td>\n",
|
1026 |
+
" <td>4</td>\n",
|
1027 |
+
" </tr>\n",
|
1028 |
+
" </tbody>\n",
|
1029 |
+
"</table>\n",
|
1030 |
+
"</div>"
|
1031 |
+
],
|
1032 |
+
"text/plain": [
|
1033 |
+
" Week number Channel Week Day TimeBand Share AMA \\\n",
|
1034 |
+
"0 7'23 Aaj Tak Saturday 02:00:00 - 02:30:00 0.081305 0.123363 \n",
|
1035 |
+
"1 7'23 Aaj Tak Saturday 02:30:00 - 03:00:00 0.469995 0.394070 \n",
|
1036 |
+
"2 7'23 Aaj Tak Saturday 03:00:00 - 03:30:00 1.723084 0.361537 \n",
|
1037 |
+
"3 7'23 Aaj Tak Saturday 03:30:00 - 04:00:00 2.019206 0.251790 \n",
|
1038 |
+
"4 7'23 Aaj Tak Saturday 04:00:00 - 04:30:00 1.163916 0.333603 \n",
|
1039 |
+
"\n",
|
1040 |
+
" rate daily reach cume reach ATS Unrolled Week_Day_Encoded \\\n",
|
1041 |
+
"0 0.000433 3.70 3.700893 00:01:00 0.0 2 \n",
|
1042 |
+
"1 0.001383 11.82 11.822103 00:01:00 0.0 2 \n",
|
1043 |
+
"2 0.001269 10.85 10.846120 00:01:00 0.0 2 \n",
|
1044 |
+
"3 0.000884 7.55 7.553692 00:01:00 0.0 2 \n",
|
1045 |
+
"4 0.001171 10.01 10.008100 00:01:00 0.0 2 \n",
|
1046 |
+
"\n",
|
1047 |
+
" Time_Band_Encoded \n",
|
1048 |
+
"0 0 \n",
|
1049 |
+
"1 1 \n",
|
1050 |
+
"2 2 \n",
|
1051 |
+
"3 3 \n",
|
1052 |
+
"4 4 "
|
1053 |
+
]
|
1054 |
+
},
|
1055 |
+
"execution_count": 18,
|
1056 |
+
"metadata": {},
|
1057 |
+
"output_type": "execute_result"
|
1058 |
+
}
|
1059 |
+
],
|
1060 |
+
"source": [
|
1061 |
+
"df.head()"
|
1062 |
+
]
|
1063 |
+
},
|
1064 |
+
{
|
1065 |
+
"cell_type": "code",
|
1066 |
+
"execution_count": 19,
|
1067 |
+
"id": "e604dbc6",
|
1068 |
+
"metadata": {},
|
1069 |
+
"outputs": [
|
1070 |
+
{
|
1071 |
+
"name": "stdout",
|
1072 |
+
"output_type": "stream",
|
1073 |
+
"text": [
|
1074 |
+
"<class 'pandas.core.frame.DataFrame'>\n",
|
1075 |
+
"RangeIndex: 12096 entries, 0 to 12095\n",
|
1076 |
+
"Data columns (total 13 columns):\n",
|
1077 |
+
" # Column Non-Null Count Dtype \n",
|
1078 |
+
"--- ------ -------------- ----- \n",
|
1079 |
+
" 0 Week number 12096 non-null object \n",
|
1080 |
+
" 1 Channel 12096 non-null object \n",
|
1081 |
+
" 2 Week Day 12096 non-null object \n",
|
1082 |
+
" 3 TimeBand 12096 non-null object \n",
|
1083 |
+
" 4 Share 12096 non-null float64\n",
|
1084 |
+
" 5 AMA 12096 non-null float64\n",
|
1085 |
+
" 6 rate 12096 non-null float64\n",
|
1086 |
+
" 7 daily reach 12096 non-null float64\n",
|
1087 |
+
" 8 cume reach 12096 non-null float64\n",
|
1088 |
+
" 9 ATS 12096 non-null object \n",
|
1089 |
+
" 10 Unrolled 12096 non-null float64\n",
|
1090 |
+
" 11 Week_Day_Encoded 12096 non-null int32 \n",
|
1091 |
+
" 12 Time_Band_Encoded 12096 non-null int32 \n",
|
1092 |
+
"dtypes: float64(6), int32(2), object(5)\n",
|
1093 |
+
"memory usage: 1.1+ MB\n"
|
1094 |
+
]
|
1095 |
+
}
|
1096 |
+
],
|
1097 |
+
"source": [
|
1098 |
+
"df.info()"
|
1099 |
+
]
|
1100 |
+
},
|
1101 |
+
{
|
1102 |
+
"cell_type": "markdown",
|
1103 |
+
"id": "fcb0b705",
|
1104 |
+
"metadata": {},
|
1105 |
+
"source": [
|
1106 |
+
"## Model Development : RandomForestRegressor"
|
1107 |
+
]
|
1108 |
+
},
|
1109 |
+
{
|
1110 |
+
"cell_type": "code",
|
1111 |
+
"execution_count": 20,
|
1112 |
+
"id": "f5af473f",
|
1113 |
+
"metadata": {},
|
1114 |
+
"outputs": [],
|
1115 |
+
"source": [
|
1116 |
+
"# Splitting into X and y \n",
|
1117 |
+
"\n",
|
1118 |
+
"X = df[['Share', 'AMA', 'rate','daily reach', 'cume reach','Week_Day_Encoded','Time_Band_Encoded']]\n",
|
1119 |
+
"y = df[['Unrolled']]"
|
1120 |
+
]
|
1121 |
+
},
|
1122 |
+
{
|
1123 |
+
"cell_type": "code",
|
1124 |
+
"execution_count": 33,
|
1125 |
+
"id": "8b74a5b8",
|
1126 |
+
"metadata": {},
|
1127 |
+
"outputs": [],
|
1128 |
+
"source": [
|
1129 |
+
"# Splitting into training and testing datasets\n",
|
1130 |
+
"\n",
|
1131 |
+
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state = 42)"
|
1132 |
+
]
|
1133 |
+
},
|
1134 |
+
{
|
1135 |
+
"cell_type": "code",
|
1136 |
+
"execution_count": 34,
|
1137 |
+
"id": "306b52f8",
|
1138 |
+
"metadata": {},
|
1139 |
+
"outputs": [
|
1140 |
+
{
|
1141 |
+
"data": {
|
1142 |
+
"text/plain": [
|
1143 |
+
"((9676, 7), (2420, 7), (9676, 1), (2420, 1))"
|
1144 |
+
]
|
1145 |
+
},
|
1146 |
+
"execution_count": 34,
|
1147 |
+
"metadata": {},
|
1148 |
+
"output_type": "execute_result"
|
1149 |
+
}
|
1150 |
+
],
|
1151 |
+
"source": [
|
1152 |
+
"X_train.shape, X_test.shape, y_train.shape, y_test.shape"
|
1153 |
+
]
|
1154 |
+
},
|
1155 |
+
{
|
1156 |
+
"cell_type": "code",
|
1157 |
+
"execution_count": 35,
|
1158 |
+
"id": "0d6b3c6e",
|
1159 |
+
"metadata": {},
|
1160 |
+
"outputs": [
|
1161 |
+
{
|
1162 |
+
"data": {
|
1163 |
+
"text/html": [
|
1164 |
+
"<div>\n",
|
1165 |
+
"<style scoped>\n",
|
1166 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1167 |
+
" vertical-align: middle;\n",
|
1168 |
+
" }\n",
|
1169 |
+
"\n",
|
1170 |
+
" .dataframe tbody tr th {\n",
|
1171 |
+
" vertical-align: top;\n",
|
1172 |
+
" }\n",
|
1173 |
+
"\n",
|
1174 |
+
" .dataframe thead th {\n",
|
1175 |
+
" text-align: right;\n",
|
1176 |
+
" }\n",
|
1177 |
+
"</style>\n",
|
1178 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1179 |
+
" <thead>\n",
|
1180 |
+
" <tr style=\"text-align: right;\">\n",
|
1181 |
+
" <th></th>\n",
|
1182 |
+
" <th>Share</th>\n",
|
1183 |
+
" <th>AMA</th>\n",
|
1184 |
+
" <th>rate</th>\n",
|
1185 |
+
" <th>daily reach</th>\n",
|
1186 |
+
" <th>cume reach</th>\n",
|
1187 |
+
" <th>Week_Day_Encoded</th>\n",
|
1188 |
+
" <th>Time_Band_Encoded</th>\n",
|
1189 |
+
" </tr>\n",
|
1190 |
+
" </thead>\n",
|
1191 |
+
" <tbody>\n",
|
1192 |
+
" <tr>\n",
|
1193 |
+
" <th>11232</th>\n",
|
1194 |
+
" <td>0.043364</td>\n",
|
1195 |
+
" <td>0.080953</td>\n",
|
1196 |
+
" <td>0.000357</td>\n",
|
1197 |
+
" <td>2.43</td>\n",
|
1198 |
+
" <td>2.428586</td>\n",
|
1199 |
+
" <td>5</td>\n",
|
1200 |
+
" <td>0</td>\n",
|
1201 |
+
" </tr>\n",
|
1202 |
+
" <tr>\n",
|
1203 |
+
" <th>11118</th>\n",
|
1204 |
+
" <td>0.319280</td>\n",
|
1205 |
+
" <td>7.050287</td>\n",
|
1206 |
+
" <td>0.031111</td>\n",
|
1207 |
+
" <td>45.37</td>\n",
|
1208 |
+
" <td>45.372124</td>\n",
|
1209 |
+
" <td>2</td>\n",
|
1210 |
+
" <td>30</td>\n",
|
1211 |
+
" </tr>\n",
|
1212 |
+
" <tr>\n",
|
1213 |
+
" <th>9301</th>\n",
|
1214 |
+
" <td>0.090855</td>\n",
|
1215 |
+
" <td>5.284389</td>\n",
|
1216 |
+
" <td>0.023781</td>\n",
|
1217 |
+
" <td>60.32</td>\n",
|
1218 |
+
" <td>60.317940</td>\n",
|
1219 |
+
" <td>6</td>\n",
|
1220 |
+
" <td>37</td>\n",
|
1221 |
+
" </tr>\n",
|
1222 |
+
" <tr>\n",
|
1223 |
+
" <th>3222</th>\n",
|
1224 |
+
" <td>0.402614</td>\n",
|
1225 |
+
" <td>0.207835</td>\n",
|
1226 |
+
" <td>0.000917</td>\n",
|
1227 |
+
" <td>4.82</td>\n",
|
1228 |
+
" <td>4.815343</td>\n",
|
1229 |
+
" <td>6</td>\n",
|
1230 |
+
" <td>6</td>\n",
|
1231 |
+
" </tr>\n",
|
1232 |
+
" <tr>\n",
|
1233 |
+
" <th>10322</th>\n",
|
1234 |
+
" <td>12.873856</td>\n",
|
1235 |
+
" <td>0.064336</td>\n",
|
1236 |
+
" <td>0.015220</td>\n",
|
1237 |
+
" <td>1.93</td>\n",
|
1238 |
+
" <td>1.930081</td>\n",
|
1239 |
+
" <td>4</td>\n",
|
1240 |
+
" <td>2</td>\n",
|
1241 |
+
" </tr>\n",
|
1242 |
+
" </tbody>\n",
|
1243 |
+
"</table>\n",
|
1244 |
+
"</div>"
|
1245 |
+
],
|
1246 |
+
"text/plain": [
|
1247 |
+
" Share AMA rate daily reach cume reach \\\n",
|
1248 |
+
"11232 0.043364 0.080953 0.000357 2.43 2.428586 \n",
|
1249 |
+
"11118 0.319280 7.050287 0.031111 45.37 45.372124 \n",
|
1250 |
+
"9301 0.090855 5.284389 0.023781 60.32 60.317940 \n",
|
1251 |
+
"3222 0.402614 0.207835 0.000917 4.82 4.815343 \n",
|
1252 |
+
"10322 12.873856 0.064336 0.015220 1.93 1.930081 \n",
|
1253 |
+
"\n",
|
1254 |
+
" Week_Day_Encoded Time_Band_Encoded \n",
|
1255 |
+
"11232 5 0 \n",
|
1256 |
+
"11118 2 30 \n",
|
1257 |
+
"9301 6 37 \n",
|
1258 |
+
"3222 6 6 \n",
|
1259 |
+
"10322 4 2 "
|
1260 |
+
]
|
1261 |
+
},
|
1262 |
+
"execution_count": 35,
|
1263 |
+
"metadata": {},
|
1264 |
+
"output_type": "execute_result"
|
1265 |
+
}
|
1266 |
+
],
|
1267 |
+
"source": [
|
1268 |
+
"X_train.head()"
|
1269 |
+
]
|
1270 |
+
},
|
1271 |
+
{
|
1272 |
+
"cell_type": "code",
|
1273 |
+
"execution_count": 36,
|
1274 |
+
"id": "38e2d59b",
|
1275 |
+
"metadata": {},
|
1276 |
+
"outputs": [
|
1277 |
+
{
|
1278 |
+
"data": {
|
1279 |
+
"text/html": [
|
1280 |
+
"<div>\n",
|
1281 |
+
"<style scoped>\n",
|
1282 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1283 |
+
" vertical-align: middle;\n",
|
1284 |
+
" }\n",
|
1285 |
+
"\n",
|
1286 |
+
" .dataframe tbody tr th {\n",
|
1287 |
+
" vertical-align: top;\n",
|
1288 |
+
" }\n",
|
1289 |
+
"\n",
|
1290 |
+
" .dataframe thead th {\n",
|
1291 |
+
" text-align: right;\n",
|
1292 |
+
" }\n",
|
1293 |
+
"</style>\n",
|
1294 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1295 |
+
" <thead>\n",
|
1296 |
+
" <tr style=\"text-align: right;\">\n",
|
1297 |
+
" <th></th>\n",
|
1298 |
+
" <th>Unrolled</th>\n",
|
1299 |
+
" </tr>\n",
|
1300 |
+
" </thead>\n",
|
1301 |
+
" <tbody>\n",
|
1302 |
+
" <tr>\n",
|
1303 |
+
" <th>11232</th>\n",
|
1304 |
+
" <td>0.000000</td>\n",
|
1305 |
+
" </tr>\n",
|
1306 |
+
" <tr>\n",
|
1307 |
+
" <th>11118</th>\n",
|
1308 |
+
" <td>0.000000</td>\n",
|
1309 |
+
" </tr>\n",
|
1310 |
+
" <tr>\n",
|
1311 |
+
" <th>9301</th>\n",
|
1312 |
+
" <td>6.285889</td>\n",
|
1313 |
+
" </tr>\n",
|
1314 |
+
" <tr>\n",
|
1315 |
+
" <th>3222</th>\n",
|
1316 |
+
" <td>0.473240</td>\n",
|
1317 |
+
" </tr>\n",
|
1318 |
+
" <tr>\n",
|
1319 |
+
" <th>10322</th>\n",
|
1320 |
+
" <td>0.000000</td>\n",
|
1321 |
+
" </tr>\n",
|
1322 |
+
" </tbody>\n",
|
1323 |
+
"</table>\n",
|
1324 |
+
"</div>"
|
1325 |
+
],
|
1326 |
+
"text/plain": [
|
1327 |
+
" Unrolled\n",
|
1328 |
+
"11232 0.000000\n",
|
1329 |
+
"11118 0.000000\n",
|
1330 |
+
"9301 6.285889\n",
|
1331 |
+
"3222 0.473240\n",
|
1332 |
+
"10322 0.000000"
|
1333 |
+
]
|
1334 |
+
},
|
1335 |
+
"execution_count": 36,
|
1336 |
+
"metadata": {},
|
1337 |
+
"output_type": "execute_result"
|
1338 |
+
}
|
1339 |
+
],
|
1340 |
+
"source": [
|
1341 |
+
"y_train[:5]"
|
1342 |
+
]
|
1343 |
+
},
|
1344 |
+
{
|
1345 |
+
"cell_type": "code",
|
1346 |
+
"execution_count": 37,
|
1347 |
+
"id": "0fc7342f",
|
1348 |
+
"metadata": {},
|
1349 |
+
"outputs": [
|
1350 |
+
{
|
1351 |
+
"data": {
|
1352 |
+
"text/html": [
|
1353 |
+
"<div>\n",
|
1354 |
+
"<style scoped>\n",
|
1355 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1356 |
+
" vertical-align: middle;\n",
|
1357 |
+
" }\n",
|
1358 |
+
"\n",
|
1359 |
+
" .dataframe tbody tr th {\n",
|
1360 |
+
" vertical-align: top;\n",
|
1361 |
+
" }\n",
|
1362 |
+
"\n",
|
1363 |
+
" .dataframe thead th {\n",
|
1364 |
+
" text-align: right;\n",
|
1365 |
+
" }\n",
|
1366 |
+
"</style>\n",
|
1367 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1368 |
+
" <thead>\n",
|
1369 |
+
" <tr style=\"text-align: right;\">\n",
|
1370 |
+
" <th></th>\n",
|
1371 |
+
" <th>Share</th>\n",
|
1372 |
+
" <th>AMA</th>\n",
|
1373 |
+
" <th>rate</th>\n",
|
1374 |
+
" <th>daily reach</th>\n",
|
1375 |
+
" <th>cume reach</th>\n",
|
1376 |
+
" <th>Week_Day_Encoded</th>\n",
|
1377 |
+
" <th>Time_Band_Encoded</th>\n",
|
1378 |
+
" </tr>\n",
|
1379 |
+
" </thead>\n",
|
1380 |
+
" <tbody>\n",
|
1381 |
+
" <tr>\n",
|
1382 |
+
" <th>468</th>\n",
|
1383 |
+
" <td>0.152596</td>\n",
|
1384 |
+
" <td>9.820626</td>\n",
|
1385 |
+
" <td>0.043337</td>\n",
|
1386 |
+
" <td>94.61</td>\n",
|
1387 |
+
" <td>94.614234</td>\n",
|
1388 |
+
" <td>1</td>\n",
|
1389 |
+
" <td>36</td>\n",
|
1390 |
+
" </tr>\n",
|
1391 |
+
" <tr>\n",
|
1392 |
+
" <th>11620</th>\n",
|
1393 |
+
" <td>0.000000</td>\n",
|
1394 |
+
" <td>0.000000</td>\n",
|
1395 |
+
" <td>0.000000</td>\n",
|
1396 |
+
" <td>0.00</td>\n",
|
1397 |
+
" <td>0.000000</td>\n",
|
1398 |
+
" <td>6</td>\n",
|
1399 |
+
" <td>4</td>\n",
|
1400 |
+
" </tr>\n",
|
1401 |
+
" <tr>\n",
|
1402 |
+
" <th>538</th>\n",
|
1403 |
+
" <td>0.969294</td>\n",
|
1404 |
+
" <td>3.181874</td>\n",
|
1405 |
+
" <td>0.014043</td>\n",
|
1406 |
+
" <td>34.30</td>\n",
|
1407 |
+
" <td>34.298911</td>\n",
|
1408 |
+
" <td>6</td>\n",
|
1409 |
+
" <td>10</td>\n",
|
1410 |
+
" </tr>\n",
|
1411 |
+
" <tr>\n",
|
1412 |
+
" <th>5265</th>\n",
|
1413 |
+
" <td>0.064741</td>\n",
|
1414 |
+
" <td>2.991051</td>\n",
|
1415 |
+
" <td>0.013427</td>\n",
|
1416 |
+
" <td>41.62</td>\n",
|
1417 |
+
" <td>41.619074</td>\n",
|
1418 |
+
" <td>6</td>\n",
|
1419 |
+
" <td>33</td>\n",
|
1420 |
+
" </tr>\n",
|
1421 |
+
" <tr>\n",
|
1422 |
+
" <th>7484</th>\n",
|
1423 |
+
" <td>0.000000</td>\n",
|
1424 |
+
" <td>0.000000</td>\n",
|
1425 |
+
" <td>0.000000</td>\n",
|
1426 |
+
" <td>0.00</td>\n",
|
1427 |
+
" <td>0.000000</td>\n",
|
1428 |
+
" <td>3</td>\n",
|
1429 |
+
" <td>44</td>\n",
|
1430 |
+
" </tr>\n",
|
1431 |
+
" </tbody>\n",
|
1432 |
+
"</table>\n",
|
1433 |
+
"</div>"
|
1434 |
+
],
|
1435 |
+
"text/plain": [
|
1436 |
+
" Share AMA rate daily reach cume reach \\\n",
|
1437 |
+
"468 0.152596 9.820626 0.043337 94.61 94.614234 \n",
|
1438 |
+
"11620 0.000000 0.000000 0.000000 0.00 0.000000 \n",
|
1439 |
+
"538 0.969294 3.181874 0.014043 34.30 34.298911 \n",
|
1440 |
+
"5265 0.064741 2.991051 0.013427 41.62 41.619074 \n",
|
1441 |
+
"7484 0.000000 0.000000 0.000000 0.00 0.000000 \n",
|
1442 |
+
"\n",
|
1443 |
+
" Week_Day_Encoded Time_Band_Encoded \n",
|
1444 |
+
"468 1 36 \n",
|
1445 |
+
"11620 6 4 \n",
|
1446 |
+
"538 6 10 \n",
|
1447 |
+
"5265 6 33 \n",
|
1448 |
+
"7484 3 44 "
|
1449 |
+
]
|
1450 |
+
},
|
1451 |
+
"execution_count": 37,
|
1452 |
+
"metadata": {},
|
1453 |
+
"output_type": "execute_result"
|
1454 |
+
}
|
1455 |
+
],
|
1456 |
+
"source": [
|
1457 |
+
"X_test.head()"
|
1458 |
+
]
|
1459 |
+
},
|
1460 |
+
{
|
1461 |
+
"cell_type": "code",
|
1462 |
+
"execution_count": 38,
|
1463 |
+
"id": "af5394e9",
|
1464 |
+
"metadata": {},
|
1465 |
+
"outputs": [
|
1466 |
+
{
|
1467 |
+
"data": {
|
1468 |
+
"text/html": [
|
1469 |
+
"<div>\n",
|
1470 |
+
"<style scoped>\n",
|
1471 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
1472 |
+
" vertical-align: middle;\n",
|
1473 |
+
" }\n",
|
1474 |
+
"\n",
|
1475 |
+
" .dataframe tbody tr th {\n",
|
1476 |
+
" vertical-align: top;\n",
|
1477 |
+
" }\n",
|
1478 |
+
"\n",
|
1479 |
+
" .dataframe thead th {\n",
|
1480 |
+
" text-align: right;\n",
|
1481 |
+
" }\n",
|
1482 |
+
"</style>\n",
|
1483 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
1484 |
+
" <thead>\n",
|
1485 |
+
" <tr style=\"text-align: right;\">\n",
|
1486 |
+
" <th></th>\n",
|
1487 |
+
" <th>Unrolled</th>\n",
|
1488 |
+
" </tr>\n",
|
1489 |
+
" </thead>\n",
|
1490 |
+
" <tbody>\n",
|
1491 |
+
" <tr>\n",
|
1492 |
+
" <th>468</th>\n",
|
1493 |
+
" <td>12.150886</td>\n",
|
1494 |
+
" </tr>\n",
|
1495 |
+
" <tr>\n",
|
1496 |
+
" <th>11620</th>\n",
|
1497 |
+
" <td>0.000000</td>\n",
|
1498 |
+
" </tr>\n",
|
1499 |
+
" <tr>\n",
|
1500 |
+
" <th>538</th>\n",
|
1501 |
+
" <td>1.480424</td>\n",
|
1502 |
+
" </tr>\n",
|
1503 |
+
" <tr>\n",
|
1504 |
+
" <th>5265</th>\n",
|
1505 |
+
" <td>5.781056</td>\n",
|
1506 |
+
" </tr>\n",
|
1507 |
+
" <tr>\n",
|
1508 |
+
" <th>7484</th>\n",
|
1509 |
+
" <td>0.000000</td>\n",
|
1510 |
+
" </tr>\n",
|
1511 |
+
" </tbody>\n",
|
1512 |
+
"</table>\n",
|
1513 |
+
"</div>"
|
1514 |
+
],
|
1515 |
+
"text/plain": [
|
1516 |
+
" Unrolled\n",
|
1517 |
+
"468 12.150886\n",
|
1518 |
+
"11620 0.000000\n",
|
1519 |
+
"538 1.480424\n",
|
1520 |
+
"5265 5.781056\n",
|
1521 |
+
"7484 0.000000"
|
1522 |
+
]
|
1523 |
+
},
|
1524 |
+
"execution_count": 38,
|
1525 |
+
"metadata": {},
|
1526 |
+
"output_type": "execute_result"
|
1527 |
+
}
|
1528 |
+
],
|
1529 |
+
"source": [
|
1530 |
+
"y_test[:5]"
|
1531 |
+
]
|
1532 |
+
},
|
1533 |
+
{
|
1534 |
+
"cell_type": "code",
|
1535 |
+
"execution_count": 39,
|
1536 |
+
"id": "ad1452db",
|
1537 |
+
"metadata": {},
|
1538 |
+
"outputs": [
|
1539 |
+
{
|
1540 |
+
"data": {
|
1541 |
+
"text/html": [
|
1542 |
+
"<style>#sk-container-id-3 {color: black;background-color: white;}#sk-container-id-3 pre{padding: 0;}#sk-container-id-3 div.sk-toggleable {background-color: white;}#sk-container-id-3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-3 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-3 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-3 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-3 div.sk-item {position: relative;z-index: 1;}#sk-container-id-3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-3 div.sk-item::before, #sk-container-id-3 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-3 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-3 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-3 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-3 div.sk-label-container {text-align: center;}#sk-container-id-3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-3 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-3\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestRegressor(random_state=42)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-3\" type=\"checkbox\" checked><label for=\"sk-estimator-id-3\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestRegressor</label><div class=\"sk-toggleable__content\"><pre>RandomForestRegressor(random_state=42)</pre></div></div></div></div></div>"
|
1543 |
+
],
|
1544 |
+
"text/plain": [
|
1545 |
+
"RandomForestRegressor(random_state=42)"
|
1546 |
+
]
|
1547 |
+
},
|
1548 |
+
"execution_count": 39,
|
1549 |
+
"metadata": {},
|
1550 |
+
"output_type": "execute_result"
|
1551 |
+
}
|
1552 |
+
],
|
1553 |
+
"source": [
|
1554 |
+
"# Train Random Forest Regression model\n",
|
1555 |
+
"\n",
|
1556 |
+
"model = RandomForestRegressor(random_state = 42)\n",
|
1557 |
+
"model.fit(X_train, y_train)"
|
1558 |
+
]
|
1559 |
+
},
|
1560 |
+
{
|
1561 |
+
"cell_type": "code",
|
1562 |
+
"execution_count": 40,
|
1563 |
+
"id": "58a025a8",
|
1564 |
+
"metadata": {},
|
1565 |
+
"outputs": [],
|
1566 |
+
"source": [
|
1567 |
+
"# Make predictions on train data\n",
|
1568 |
+
"\n",
|
1569 |
+
"y_pred_train = model.predict(X_train)"
|
1570 |
+
]
|
1571 |
+
},
|
1572 |
+
{
|
1573 |
+
"cell_type": "code",
|
1574 |
+
"execution_count": 72,
|
1575 |
+
"id": "403259f6",
|
1576 |
+
"metadata": {},
|
1577 |
+
"outputs": [
|
1578 |
+
{
|
1579 |
+
"name": "stdout",
|
1580 |
+
"output_type": "stream",
|
1581 |
+
"text": [
|
1582 |
+
"The Accuracy of Training Dataset is : 95.65798927048185\n"
|
1583 |
+
]
|
1584 |
+
}
|
1585 |
+
],
|
1586 |
+
"source": [
|
1587 |
+
"acc_train = r2_score(y_train, y_pred_train)\n",
|
1588 |
+
"print(\"The Accuracy of Training Dataset is : \",acc_train*100)"
|
1589 |
+
]
|
1590 |
+
},
|
1591 |
+
{
|
1592 |
+
"cell_type": "code",
|
1593 |
+
"execution_count": 42,
|
1594 |
+
"id": "ac553b1e",
|
1595 |
+
"metadata": {},
|
1596 |
+
"outputs": [],
|
1597 |
+
"source": [
|
1598 |
+
"# Make predictions on test data\n",
|
1599 |
+
"\n",
|
1600 |
+
"y_pred_test = model.predict(X_test)"
|
1601 |
+
]
|
1602 |
+
},
|
1603 |
+
{
|
1604 |
+
"cell_type": "code",
|
1605 |
+
"execution_count": 71,
|
1606 |
+
"id": "bc359944",
|
1607 |
+
"metadata": {},
|
1608 |
+
"outputs": [
|
1609 |
+
{
|
1610 |
+
"name": "stdout",
|
1611 |
+
"output_type": "stream",
|
1612 |
+
"text": [
|
1613 |
+
"The Accuracy of Test Dataset is : 71.01332045918515\n"
|
1614 |
+
]
|
1615 |
+
}
|
1616 |
+
],
|
1617 |
+
"source": [
|
1618 |
+
"acc_test = r2_score(y_test, y_pred_test)\n",
|
1619 |
+
"print(\"The Accuracy of Test Dataset is : \",acc_test*100)"
|
1620 |
+
]
|
1621 |
+
},
|
1622 |
+
{
|
1623 |
+
"cell_type": "code",
|
1624 |
+
"execution_count": 70,
|
1625 |
+
"id": "fa33faec",
|
1626 |
+
"metadata": {},
|
1627 |
+
"outputs": [],
|
1628 |
+
"source": [
|
1629 |
+
"# # Saving Model\n",
|
1630 |
+
"\n",
|
1631 |
+
"# import pickle\n",
|
1632 |
+
"\n",
|
1633 |
+
"# with open('aajTak_model.pkl','wb') as file1:\n",
|
1634 |
+
"# pickle.dump(model,file1) "
|
1635 |
+
]
|
1636 |
+
},
|
1637 |
+
{
|
1638 |
+
"cell_type": "markdown",
|
1639 |
+
"id": "6f30a678",
|
1640 |
+
"metadata": {},
|
1641 |
+
"source": [
|
1642 |
+
"## Hyperparameter Tuning for Random Forest Regression"
|
1643 |
+
]
|
1644 |
+
},
|
1645 |
+
{
|
1646 |
+
"cell_type": "code",
|
1647 |
+
"execution_count": 45,
|
1648 |
+
"id": "44bd53a2",
|
1649 |
+
"metadata": {},
|
1650 |
+
"outputs": [],
|
1651 |
+
"source": [
|
1652 |
+
"# Hyperparameter Tuning\n",
|
1653 |
+
"\n",
|
1654 |
+
"hyp_model = RandomForestRegressor()\n",
|
1655 |
+
"\n",
|
1656 |
+
"hyp = {\n",
|
1657 |
+
"\"n_estimators\": np.arange(10,50,10),\n",
|
1658 |
+
"'criterion':[\"squared_error\", \"absolute_error\"],\n",
|
1659 |
+
"'max_depth':np.arange(3,50),\n",
|
1660 |
+
"# 'min_samples_split':np.arange(2,5),\n",
|
1661 |
+
"# 'min_samples_leaf':np.arange(1,5),\n",
|
1662 |
+
"'random_state':np.arange(0,100)\n",
|
1663 |
+
"}"
|
1664 |
+
]
|
1665 |
+
},
|
1666 |
+
{
|
1667 |
+
"cell_type": "code",
|
1668 |
+
"execution_count": 46,
|
1669 |
+
"id": "b7c9e0ab",
|
1670 |
+
"metadata": {},
|
1671 |
+
"outputs": [
|
1672 |
+
{
|
1673 |
+
"data": {
|
1674 |
+
"text/html": [
|
1675 |
+
"<style>#sk-container-id-4 {color: black;background-color: white;}#sk-container-id-4 pre{padding: 0;}#sk-container-id-4 div.sk-toggleable {background-color: white;}#sk-container-id-4 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-4 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-4 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-4 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-4 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-4 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-4 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-4 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-4 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-4 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-4 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-4 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-4 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-4 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-4 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-4 div.sk-item {position: relative;z-index: 1;}#sk-container-id-4 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-4 div.sk-item::before, #sk-container-id-4 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-4 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-4 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-4 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-4 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-4 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-4 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-4 div.sk-label-container {text-align: center;}#sk-container-id-4 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-4 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-4\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(),\n",
|
1676 |
+
" param_distributions={'criterion': ['squared_error',\n",
|
1677 |
+
" 'absolute_error'],\n",
|
1678 |
+
" 'max_depth': array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,\n",
|
1679 |
+
" 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\n",
|
1680 |
+
" 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),\n",
|
1681 |
+
" 'n_estimators': array([10, 20, 30, 40]),\n",
|
1682 |
+
" 'random_state': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n",
|
1683 |
+
" 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n",
|
1684 |
+
" 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n",
|
1685 |
+
" 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n",
|
1686 |
+
" 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n",
|
1687 |
+
" 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])})</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item sk-dashed-wrapped\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-4\" type=\"checkbox\" ><label for=\"sk-estimator-id-4\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomizedSearchCV</label><div class=\"sk-toggleable__content\"><pre>RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(),\n",
|
1688 |
+
" param_distributions={'criterion': ['squared_error',\n",
|
1689 |
+
" 'absolute_error'],\n",
|
1690 |
+
" 'max_depth': array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,\n",
|
1691 |
+
" 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\n",
|
1692 |
+
" 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),\n",
|
1693 |
+
" 'n_estimators': array([10, 20, 30, 40]),\n",
|
1694 |
+
" 'random_state': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n",
|
1695 |
+
" 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n",
|
1696 |
+
" 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n",
|
1697 |
+
" 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n",
|
1698 |
+
" 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n",
|
1699 |
+
" 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])})</pre></div></div></div><div class=\"sk-parallel\"><div class=\"sk-parallel-item\"><div class=\"sk-item\"><div class=\"sk-label-container\"><div class=\"sk-label sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-5\" type=\"checkbox\" ><label for=\"sk-estimator-id-5\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">estimator: RandomForestRegressor</label><div class=\"sk-toggleable__content\"><pre>RandomForestRegressor()</pre></div></div></div><div class=\"sk-serial\"><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-6\" type=\"checkbox\" ><label for=\"sk-estimator-id-6\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestRegressor</label><div class=\"sk-toggleable__content\"><pre>RandomForestRegressor()</pre></div></div></div></div></div></div></div></div></div></div>"
|
1700 |
+
],
|
1701 |
+
"text/plain": [
|
1702 |
+
"RandomizedSearchCV(cv=5, estimator=RandomForestRegressor(),\n",
|
1703 |
+
" param_distributions={'criterion': ['squared_error',\n",
|
1704 |
+
" 'absolute_error'],\n",
|
1705 |
+
" 'max_depth': array([ 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,\n",
|
1706 |
+
" 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36,\n",
|
1707 |
+
" 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49]),\n",
|
1708 |
+
" 'n_estimators': array([10, 20, 30, 40]),\n",
|
1709 |
+
" 'random_state': array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n",
|
1710 |
+
" 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33,\n",
|
1711 |
+
" 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,\n",
|
1712 |
+
" 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67,\n",
|
1713 |
+
" 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84,\n",
|
1714 |
+
" 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99])})"
|
1715 |
+
]
|
1716 |
+
},
|
1717 |
+
"execution_count": 46,
|
1718 |
+
"metadata": {},
|
1719 |
+
"output_type": "execute_result"
|
1720 |
+
}
|
1721 |
+
],
|
1722 |
+
"source": [
|
1723 |
+
"rscv = RandomizedSearchCV(hyp_model, hyp, cv=5)\n",
|
1724 |
+
"rscv.fit(X_train,y_train)"
|
1725 |
+
]
|
1726 |
+
},
|
1727 |
+
{
|
1728 |
+
"cell_type": "code",
|
1729 |
+
"execution_count": 47,
|
1730 |
+
"id": "f0b0d172",
|
1731 |
+
"metadata": {},
|
1732 |
+
"outputs": [
|
1733 |
+
{
|
1734 |
+
"data": {
|
1735 |
+
"text/plain": [
|
1736 |
+
"{'random_state': 49,\n",
|
1737 |
+
" 'n_estimators': 20,\n",
|
1738 |
+
" 'max_depth': 39,\n",
|
1739 |
+
" 'criterion': 'absolute_error'}"
|
1740 |
+
]
|
1741 |
+
},
|
1742 |
+
"execution_count": 47,
|
1743 |
+
"metadata": {},
|
1744 |
+
"output_type": "execute_result"
|
1745 |
+
}
|
1746 |
+
],
|
1747 |
+
"source": [
|
1748 |
+
"rscv.best_params_"
|
1749 |
+
]
|
1750 |
+
},
|
1751 |
+
{
|
1752 |
+
"cell_type": "code",
|
1753 |
+
"execution_count": 48,
|
1754 |
+
"id": "0252bdea",
|
1755 |
+
"metadata": {},
|
1756 |
+
"outputs": [],
|
1757 |
+
"source": [
|
1758 |
+
"best_model = rscv.best_estimator_"
|
1759 |
+
]
|
1760 |
+
},
|
1761 |
+
{
|
1762 |
+
"cell_type": "code",
|
1763 |
+
"execution_count": 49,
|
1764 |
+
"id": "b23a1e56",
|
1765 |
+
"metadata": {},
|
1766 |
+
"outputs": [
|
1767 |
+
{
|
1768 |
+
"data": {
|
1769 |
+
"text/html": [
|
1770 |
+
"<style>#sk-container-id-5 {color: black;background-color: white;}#sk-container-id-5 pre{padding: 0;}#sk-container-id-5 div.sk-toggleable {background-color: white;}#sk-container-id-5 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-5 label.sk-toggleable__label-arrow:before {content: \"▸\";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-5 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-5 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-5 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-5 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-5 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-5 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: \"▾\";}#sk-container-id-5 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-5 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-5 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-5 div.sk-parallel-item::after {content: \"\";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-5 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-5 div.sk-serial::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-5 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-5 div.sk-item {position: relative;z-index: 1;}#sk-container-id-5 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-5 div.sk-item::before, #sk-container-id-5 div.sk-parallel-item::before {content: \"\";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-5 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-5 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-5 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-5 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-5 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-5 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-5 div.sk-label-container {text-align: center;}#sk-container-id-5 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-5 div.sk-text-repr-fallback {display: none;}</style><div id=\"sk-container-id-5\" class=\"sk-top-container\"><div class=\"sk-text-repr-fallback\"><pre>RandomForestRegressor(criterion='absolute_error', max_depth=39, n_estimators=20,\n",
|
1771 |
+
" random_state=49)</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class=\"sk-container\" hidden><div class=\"sk-item\"><div class=\"sk-estimator sk-toggleable\"><input class=\"sk-toggleable__control sk-hidden--visually\" id=\"sk-estimator-id-7\" type=\"checkbox\" checked><label for=\"sk-estimator-id-7\" class=\"sk-toggleable__label sk-toggleable__label-arrow\">RandomForestRegressor</label><div class=\"sk-toggleable__content\"><pre>RandomForestRegressor(criterion='absolute_error', max_depth=39, n_estimators=20,\n",
|
1772 |
+
" random_state=49)</pre></div></div></div></div></div>"
|
1773 |
+
],
|
1774 |
+
"text/plain": [
|
1775 |
+
"RandomForestRegressor(criterion='absolute_error', max_depth=39, n_estimators=20,\n",
|
1776 |
+
" random_state=49)"
|
1777 |
+
]
|
1778 |
+
},
|
1779 |
+
"execution_count": 49,
|
1780 |
+
"metadata": {},
|
1781 |
+
"output_type": "execute_result"
|
1782 |
+
}
|
1783 |
+
],
|
1784 |
+
"source": [
|
1785 |
+
"best_model.fit(X_train, y_train)"
|
1786 |
+
]
|
1787 |
+
},
|
1788 |
+
{
|
1789 |
+
"cell_type": "code",
|
1790 |
+
"execution_count": 50,
|
1791 |
+
"id": "c2d2e731",
|
1792 |
+
"metadata": {},
|
1793 |
+
"outputs": [],
|
1794 |
+
"source": [
|
1795 |
+
"ypredtn = best_model.predict(X_train)"
|
1796 |
+
]
|
1797 |
+
},
|
1798 |
+
{
|
1799 |
+
"cell_type": "code",
|
1800 |
+
"execution_count": 51,
|
1801 |
+
"id": "9308b1d8",
|
1802 |
+
"metadata": {},
|
1803 |
+
"outputs": [
|
1804 |
+
{
|
1805 |
+
"name": "stdout",
|
1806 |
+
"output_type": "stream",
|
1807 |
+
"text": [
|
1808 |
+
"The Accuracy of Training Dataset after hyperparameter tuning is : 94.41670975802535\n"
|
1809 |
+
]
|
1810 |
+
}
|
1811 |
+
],
|
1812 |
+
"source": [
|
1813 |
+
"acctn = r2_score(y_train, ypredtn)\n",
|
1814 |
+
"print(\"The Accuracy of Training Dataset after hyperparameter tuning is : \",acctn*100)"
|
1815 |
+
]
|
1816 |
+
},
|
1817 |
+
{
|
1818 |
+
"cell_type": "code",
|
1819 |
+
"execution_count": 52,
|
1820 |
+
"id": "23cf5580",
|
1821 |
+
"metadata": {},
|
1822 |
+
"outputs": [],
|
1823 |
+
"source": [
|
1824 |
+
"ypredts = best_model.predict(X_test)"
|
1825 |
+
]
|
1826 |
+
},
|
1827 |
+
{
|
1828 |
+
"cell_type": "code",
|
1829 |
+
"execution_count": 54,
|
1830 |
+
"id": "d88fdedb",
|
1831 |
+
"metadata": {},
|
1832 |
+
"outputs": [
|
1833 |
+
{
|
1834 |
+
"name": "stdout",
|
1835 |
+
"output_type": "stream",
|
1836 |
+
"text": [
|
1837 |
+
"The Accuracy of Testing Dataset after hyperparameter tuning is : 69.97941529616791\n"
|
1838 |
+
]
|
1839 |
+
}
|
1840 |
+
],
|
1841 |
+
"source": [
|
1842 |
+
"accts = r2_score(y_test, ypredts)\n",
|
1843 |
+
"print(\"The Accuracy of Testing Dataset after hyperparameter tuning is : \",accts*100)"
|
1844 |
+
]
|
1845 |
+
},
|
1846 |
+
{
|
1847 |
+
"cell_type": "code",
|
1848 |
+
"execution_count": 73,
|
1849 |
+
"id": "e5298c37",
|
1850 |
+
"metadata": {},
|
1851 |
+
"outputs": [],
|
1852 |
+
"source": [
|
1853 |
+
"# # Saving Model\n",
|
1854 |
+
"\n",
|
1855 |
+
"# import pickle\n",
|
1856 |
+
"\n",
|
1857 |
+
"# with open('aajTak_fineTune_model.pkl','wb') as file:\n",
|
1858 |
+
"# pickle.dump(best_model,file) "
|
1859 |
+
]
|
1860 |
+
},
|
1861 |
+
{
|
1862 |
+
"cell_type": "code",
|
1863 |
+
"execution_count": 74,
|
1864 |
+
"id": "7a5d25ac",
|
1865 |
+
"metadata": {},
|
1866 |
+
"outputs": [],
|
1867 |
+
"source": [
|
1868 |
+
"# # Saving the LabelEncoders for weekDay\n",
|
1869 |
+
"\n",
|
1870 |
+
"# with open('weekDay_le.pkl','wb') as f1:\n",
|
1871 |
+
"# pickle.dump(weekDay_le,f1)"
|
1872 |
+
]
|
1873 |
+
},
|
1874 |
+
{
|
1875 |
+
"cell_type": "code",
|
1876 |
+
"execution_count": 75,
|
1877 |
+
"id": "6a268e27",
|
1878 |
+
"metadata": {},
|
1879 |
+
"outputs": [],
|
1880 |
+
"source": [
|
1881 |
+
"# # Saving the LabelEncoders for timeBand\n",
|
1882 |
+
"\n",
|
1883 |
+
"# with open('timeBand_le.pkl','wb') as f2:\n",
|
1884 |
+
"# pickle.dump(timeBand_le,f2)"
|
1885 |
+
]
|
1886 |
+
},
|
1887 |
+
{
|
1888 |
+
"cell_type": "markdown",
|
1889 |
+
"id": "57557ac1",
|
1890 |
+
"metadata": {},
|
1891 |
+
"source": [
|
1892 |
+
"## UserTest Function - Prediction Script"
|
1893 |
+
]
|
1894 |
+
},
|
1895 |
+
{
|
1896 |
+
"cell_type": "code",
|
1897 |
+
"execution_count": 1,
|
1898 |
+
"id": "8cf621c3",
|
1899 |
+
"metadata": {},
|
1900 |
+
"outputs": [],
|
1901 |
+
"source": [
|
1902 |
+
"# import required packages\n",
|
1903 |
+
"\n",
|
1904 |
+
"import pandas as pd\n",
|
1905 |
+
"import numpy as np\n",
|
1906 |
+
"import matplotlib as plt\n",
|
1907 |
+
"import seaborn as sns\n",
|
1908 |
+
"\n",
|
1909 |
+
"from sklearn.model_selection import RandomizedSearchCV, GridSearchCV, train_test_split\n",
|
1910 |
+
"from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor\n",
|
1911 |
+
"from sklearn.metrics import r2_score, mean_absolute_error, mean_squared_error\n",
|
1912 |
+
"from sklearn.preprocessing import LabelEncoder\n",
|
1913 |
+
"\n",
|
1914 |
+
"import warnings\n",
|
1915 |
+
"warnings.filterwarnings('ignore')\n",
|
1916 |
+
"\n",
|
1917 |
+
"import pickle"
|
1918 |
+
]
|
1919 |
+
},
|
1920 |
+
{
|
1921 |
+
"cell_type": "code",
|
1922 |
+
"execution_count": 2,
|
1923 |
+
"id": "62be1870",
|
1924 |
+
"metadata": {},
|
1925 |
+
"outputs": [],
|
1926 |
+
"source": [
|
1927 |
+
"# load the saved model using pickle\n",
|
1928 |
+
"with open('aajTak_model.pkl', 'rb') as f1:\n",
|
1929 |
+
" model1 = pickle.load(f1)"
|
1930 |
+
]
|
1931 |
+
},
|
1932 |
+
{
|
1933 |
+
"cell_type": "code",
|
1934 |
+
"execution_count": 3,
|
1935 |
+
"id": "0b4e2a7c",
|
1936 |
+
"metadata": {},
|
1937 |
+
"outputs": [],
|
1938 |
+
"source": [
|
1939 |
+
"# # load the saved model using pickle\n",
|
1940 |
+
"# with open('aajTak_fineTune_model.pkl', 'rb') as file:\n",
|
1941 |
+
"# model = pickle.load(file)\n",
|
1942 |
+
"\n",
|
1943 |
+
"# Load the saved weekDay label encoder object using pickle\n",
|
1944 |
+
"with open('weekDay_le.pkl','rb') as file1:\n",
|
1945 |
+
" weekDay_le = pickle.load(file1)\n",
|
1946 |
+
"\n",
|
1947 |
+
"# Load the saved timeBand label encoder object using pickle\n",
|
1948 |
+
"with open('timeBand_le.pkl','rb') as file2:\n",
|
1949 |
+
" timeBand_le = pickle.load(file2)"
|
1950 |
+
]
|
1951 |
+
},
|
1952 |
+
{
|
1953 |
+
"cell_type": "code",
|
1954 |
+
"execution_count": 4,
|
1955 |
+
"id": "e3a13c4e",
|
1956 |
+
"metadata": {},
|
1957 |
+
"outputs": [],
|
1958 |
+
"source": [
|
1959 |
+
"# define the prediction function\n",
|
1960 |
+
"# X = df[['Share', 'AMA', 'rate','daily reach', 'cume reach','Week_Day_Encoded','Time_Band_Encoded']]\n",
|
1961 |
+
"# y = df[['Unrolled']]\n",
|
1962 |
+
"\n",
|
1963 |
+
"\n",
|
1964 |
+
"def predict_unrolled_value(Share, AMA, rate, daily_reach, cume_reach, Week_Day, Time_Band):\n",
|
1965 |
+
" \n",
|
1966 |
+
" # create a DataFrame with the input variables\n",
|
1967 |
+
" \n",
|
1968 |
+
" # encode the Week_Day using the loaded LabelEncoder object\n",
|
1969 |
+
" weekDay_encoded = weekDay_le.transform([Week_Day])[0]\n",
|
1970 |
+
" \n",
|
1971 |
+
" # encode the Time_Band using the loaded LabelEncoder object\n",
|
1972 |
+
" Time_Band_encoded = timeBand_le.transform([Time_Band])[0]\n",
|
1973 |
+
" \n",
|
1974 |
+
" input_data = pd.DataFrame({'Share': [Share], \n",
|
1975 |
+
" 'AMA': [AMA], \n",
|
1976 |
+
" 'rate': [rate],\n",
|
1977 |
+
" 'daily reach': [daily_reach], \n",
|
1978 |
+
" 'cume reach': [cume_reach], \n",
|
1979 |
+
" 'Week_Day_Encoded': [weekDay_encoded], \n",
|
1980 |
+
" 'Time_Band_Encoded': [Time_Band_encoded]})\n",
|
1981 |
+
" \n",
|
1982 |
+
" # make the prediction using the loaded model and input data\n",
|
1983 |
+
" predicted_unrolled_value = model1.predict(input_data)\n",
|
1984 |
+
" \n",
|
1985 |
+
" # return the predicted unrolled value as output\n",
|
1986 |
+
" return predicted_unrolled_value[0]"
|
1987 |
+
]
|
1988 |
+
},
|
1989 |
+
{
|
1990 |
+
"cell_type": "code",
|
1991 |
+
"execution_count": 5,
|
1992 |
+
"id": "df4390e9",
|
1993 |
+
"metadata": {},
|
1994 |
+
"outputs": [
|
1995 |
+
{
|
1996 |
+
"data": {
|
1997 |
+
"text/plain": [
|
1998 |
+
"4.123954"
|
1999 |
+
]
|
2000 |
+
},
|
2001 |
+
"execution_count": 5,
|
2002 |
+
"metadata": {},
|
2003 |
+
"output_type": "execute_result"
|
2004 |
+
}
|
2005 |
+
],
|
2006 |
+
"source": [
|
2007 |
+
"# Function calling\n",
|
2008 |
+
"# 0.064741\t2.991051\t0.013427\t41.62\t41.619074\t'Wednesday'\t'18:30:00 - 19:00:00' --> test input data\n",
|
2009 |
+
"# 5.781056 --> unrolled actual value\n",
|
2010 |
+
"\n",
|
2011 |
+
"predict_unrolled_value(0.064741, 2.991051, 0.013427, 41.62, 41.619074, 'Wednesday', '18:30:00 - 19:00:00')"
|
2012 |
+
]
|
2013 |
+
},
|
2014 |
+
{
|
2015 |
+
"cell_type": "code",
|
2016 |
+
"execution_count": 6,
|
2017 |
+
"id": "5fadb125",
|
2018 |
+
"metadata": {},
|
2019 |
+
"outputs": [
|
2020 |
+
{
|
2021 |
+
"data": {
|
2022 |
+
"text/plain": [
|
2023 |
+
"9.738856000000002"
|
2024 |
+
]
|
2025 |
+
},
|
2026 |
+
"execution_count": 6,
|
2027 |
+
"metadata": {},
|
2028 |
+
"output_type": "execute_result"
|
2029 |
+
}
|
2030 |
+
],
|
2031 |
+
"source": [
|
2032 |
+
"# 0.152596\t9.820626\t0.043337\t94.61\t94.614234\t1\t'20:00:00 - 20:30:00'\n",
|
2033 |
+
"# 12.150886\n",
|
2034 |
+
"predict_unrolled_value(0.152596, 9.820626, 0.043337, 94.61, 94.614234, 'Monday', '20:00:00 - 20:30:00')"
|
2035 |
+
]
|
2036 |
+
},
|
2037 |
+
{
|
2038 |
+
"cell_type": "code",
|
2039 |
+
"execution_count": 7,
|
2040 |
+
"id": "3ec5b3e0",
|
2041 |
+
"metadata": {},
|
2042 |
+
"outputs": [
|
2043 |
+
{
|
2044 |
+
"data": {
|
2045 |
+
"text/plain": [
|
2046 |
+
"3.3215619"
|
2047 |
+
]
|
2048 |
+
},
|
2049 |
+
"execution_count": 7,
|
2050 |
+
"metadata": {},
|
2051 |
+
"output_type": "execute_result"
|
2052 |
+
}
|
2053 |
+
],
|
2054 |
+
"source": [
|
2055 |
+
"# 0.611246\t4.196084\t0.018516\t36.23\t36.231006\t'Saturday'\t''08:00:00 - 08:30:00''\n",
|
2056 |
+
"# 3.711884\n",
|
2057 |
+
"predict_unrolled_value(0.611246, 4.196084, 0.018516, 36.23, 36.23, 'Saturday', '08:00:00 - 08:30:00')"
|
2058 |
+
]
|
2059 |
+
},
|
2060 |
+
{
|
2061 |
+
"cell_type": "code",
|
2062 |
+
"execution_count": null,
|
2063 |
+
"id": "83a75023",
|
2064 |
+
"metadata": {},
|
2065 |
+
"outputs": [],
|
2066 |
+
"source": []
|
2067 |
+
},
|
2068 |
+
{
|
2069 |
+
"cell_type": "code",
|
2070 |
+
"execution_count": null,
|
2071 |
+
"id": "1799f490",
|
2072 |
+
"metadata": {},
|
2073 |
+
"outputs": [],
|
2074 |
+
"source": []
|
2075 |
+
}
|
2076 |
+
],
|
2077 |
+
"metadata": {
|
2078 |
+
"kernelspec": {
|
2079 |
+
"display_name": "Python 3 (ipykernel)",
|
2080 |
+
"language": "python",
|
2081 |
+
"name": "python3"
|
2082 |
+
},
|
2083 |
+
"language_info": {
|
2084 |
+
"codemirror_mode": {
|
2085 |
+
"name": "ipython",
|
2086 |
+
"version": 3
|
2087 |
+
},
|
2088 |
+
"file_extension": ".py",
|
2089 |
+
"mimetype": "text/x-python",
|
2090 |
+
"name": "python",
|
2091 |
+
"nbconvert_exporter": "python",
|
2092 |
+
"pygments_lexer": "ipython3",
|
2093 |
+
"version": "3.9.10"
|
2094 |
+
}
|
2095 |
+
},
|
2096 |
+
"nbformat": 4,
|
2097 |
+
"nbformat_minor": 5
|
2098 |
+
}
|
aajTak_model.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f5f28cd030817fb6bbbcaed82f2170e9d81cdf415f4af8631620b60fed3d15b9
|
3 |
+
size 8680525
|
input_raw_data.xlsx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f011103414f3360afe65aec973b3674514bc66d20a9a053c250ee04f68a03b46
|
3 |
+
size 1057440
|
timeBand_le.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:74ea331adc8d7dcb4cc11585b75fa42a8f77b3fda8418c70cbe1042ef21c8c4a
|
3 |
+
size 1298
|
weekDay_le.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:637bc881b0bb4cb2839589ff1292f7854daf011a20c6ca79549e323dc356f5cb
|
3 |
+
size 313
|