Update Training/Code/train.py
Browse files- Training/Code/train.py +15 -12
Training/Code/train.py
CHANGED
|
@@ -1,11 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
-
from keras.models import Model
|
| 4 |
-
from keras.layers import Dense, Dropout, GlobalAveragePooling2D, Input
|
| 5 |
-
from keras.optimizers import Adam
|
| 6 |
-
from
|
| 7 |
-
from keras.applications import MobileNetV2
|
| 8 |
-
from keras.callbacks import EarlyStopping, ModelCheckpoint
|
| 9 |
|
| 10 |
# Define paths
|
| 11 |
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../'))
|
|
@@ -24,17 +24,20 @@ train_datagen = ImageDataGenerator(
|
|
| 24 |
)
|
| 25 |
val_datagen = ImageDataGenerator(rescale=1./255)
|
| 26 |
|
|
|
|
|
|
|
|
|
|
| 27 |
train_generator = train_datagen.flow_from_directory(
|
| 28 |
-
train_dir, target_size=(
|
| 29 |
|
| 30 |
validation_generator = val_datagen.flow_from_directory(
|
| 31 |
-
val_dir, target_size=(
|
| 32 |
|
| 33 |
# Load base model
|
| 34 |
-
base_model = MobileNetV2(include_top=False, input_shape=(
|
| 35 |
base_model.trainable = False # Freeze base layers
|
| 36 |
|
| 37 |
-
# Add custom
|
| 38 |
x = base_model.output
|
| 39 |
x = GlobalAveragePooling2D()(x)
|
| 40 |
x = Dense(256, activation='relu')(x)
|
|
@@ -47,11 +50,11 @@ model.compile(optimizer=Adam(learning_rate=0.0001), loss='categorical_crossentro
|
|
| 47 |
# Callbacks
|
| 48 |
callbacks = [
|
| 49 |
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
|
| 50 |
-
ModelCheckpoint('best_model.
|
| 51 |
]
|
| 52 |
|
| 53 |
# Train the model
|
| 54 |
model.fit(train_generator, validation_data=validation_generator, epochs=30, callbacks=callbacks)
|
| 55 |
|
| 56 |
-
# Save model
|
| 57 |
model.save("emotion_model.keras")
|
|
|
|
| 1 |
import os
|
| 2 |
import numpy as np
|
| 3 |
+
from tensorflow.keras.models import Model
|
| 4 |
+
from tensorflow.keras.layers import Dense, Dropout, GlobalAveragePooling2D, Input
|
| 5 |
+
from tensorflow.keras.optimizers import Adam
|
| 6 |
+
from tensorflow.keras.preprocessing.image import ImageDataGenerator
|
| 7 |
+
from tensorflow.keras.applications import MobileNetV2
|
| 8 |
+
from tensorflow.keras.callbacks import EarlyStopping, ModelCheckpoint
|
| 9 |
|
| 10 |
# Define paths
|
| 11 |
base_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), '../'))
|
|
|
|
| 24 |
)
|
| 25 |
val_datagen = ImageDataGenerator(rescale=1./255)
|
| 26 |
|
| 27 |
+
# Use a larger image size for better accuracy
|
| 28 |
+
img_size = 128
|
| 29 |
+
|
| 30 |
train_generator = train_datagen.flow_from_directory(
|
| 31 |
+
train_dir, target_size=(img_size, img_size), batch_size=32, color_mode='rgb', class_mode='categorical')
|
| 32 |
|
| 33 |
validation_generator = val_datagen.flow_from_directory(
|
| 34 |
+
val_dir, target_size=(img_size, img_size), batch_size=32, color_mode='rgb', class_mode='categorical')
|
| 35 |
|
| 36 |
# Load base model
|
| 37 |
+
base_model = MobileNetV2(include_top=False, input_shape=(img_size, img_size, 3), weights='imagenet')
|
| 38 |
base_model.trainable = False # Freeze base layers
|
| 39 |
|
| 40 |
+
# Add custom classification head
|
| 41 |
x = base_model.output
|
| 42 |
x = GlobalAveragePooling2D()(x)
|
| 43 |
x = Dense(256, activation='relu')(x)
|
|
|
|
| 50 |
# Callbacks
|
| 51 |
callbacks = [
|
| 52 |
EarlyStopping(monitor='val_loss', patience=5, restore_best_weights=True),
|
| 53 |
+
ModelCheckpoint('best_model.keras', monitor='val_loss', save_best_only=True)
|
| 54 |
]
|
| 55 |
|
| 56 |
# Train the model
|
| 57 |
model.fit(train_generator, validation_data=validation_generator, epochs=30, callbacks=callbacks)
|
| 58 |
|
| 59 |
+
# Save the final model
|
| 60 |
model.save("emotion_model.keras")
|