import os import shutil import streamlit as st from langchain_core.prompts import ChatPromptTemplate from langchain_community.vectorstores import FAISS from langchain_core.output_parsers import StrOutputParser from langchain_core.runnables import RunnablePassthrough from langchain_community.llms import Together from langchain_community.document_loaders import UnstructuredPDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import HuggingFaceEmbeddings os.environ["TOGETHER_API_KEY"] =os.getenv("TOGETHER_API_KEY") def inference(chain, input_query): """Invoke the processing chain with the input query.""" result = chain.invoke(input_query) return result def create_chain(retriever, prompt, model): """Compose the processing chain with the specified components.""" chain = ( {"context": retriever, "question": RunnablePassthrough()} | prompt | model | StrOutputParser() ) return chain def generate_prompt(): """Define the prompt template for question answering.""" template = """[INST] Answer the question in a simple sentence based only on the following context: {context} Question: {question} [/INST] """ return ChatPromptTemplate.from_template(template) def configure_model(): """Configure the language model with specified parameters.""" return Together( model="mistralai/Mixtral-8x7B-Instruct-v0.1", temperature=0.1, max_tokens=3000, top_k=50, top_p=0.7, repetition_penalty=1.1, ) def configure_retriever(pdf_loader): """Configure the retriever with embeddings and a FAISS vector store.""" embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") vector_db = FAISS.from_documents(pdf_loader, embeddings) return vector_db.as_retriever() def load_documents(path): """Load and preprocess documents from PDF files located at the specified path.""" pdf_loader = [] for file in os.listdir(path): if file.endswith('.pdf'): filepath = os.path.join(path, file) loader = UnstructuredPDFLoader(filepath) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=18000, chunk_overlap=10) docs = text_splitter.split_documents(documents) pdf_loader.extend(docs) return pdf_loader def process_document(path, input_query): """Process the document by setting up the chain and invoking it with the input query.""" pdf_loader = load_documents(path) llm_model = configure_model() prompt = generate_prompt() retriever = configure_retriever(pdf_loader) chain = create_chain(retriever, prompt, llm_model) response = inference(chain, input_query) return response def main(): """Main function to run the Streamlit app.""" tmp_folder = '/tmp/1' os.makedirs(tmp_folder,exist_ok=True) st.title("Document Q&A Chatbot") uploaded_files = st.sidebar.file_uploader("Choose PDF files", accept_multiple_files=True, type='pdf') if uploaded_files: for file in uploaded_files: with open(os.path.join(tmp_folder, file.name), 'wb') as f: f.write(file.getbuffer()) st.success('File successfully uploaded. Start prompting!') if 'chat_history' not in st.session_state: st.session_state.chat_history = [] if uploaded_files: with st.form(key='question_form'): user_query = st.text_input("Ask a question:", key="query_input") if st.form_submit_button("Ask") and user_query: response = process_document(tmp_folder, user_query) st.session_state.chat_history.append({"question": user_query, "answer": response}) if st.button("Clear Chat History"): st.session_state.chat_history = [] for chat in st.session_state.chat_history: st.markdown(f"**Q:** {chat['question']}") st.markdown(f"**A:** {chat['answer']}") st.markdown("---") else: st.success('Upload Document to Start Process !') if st.sidebar.button("REMOVE UPLOADED FILES"): document_count = os.listdir(tmp_folder) if len(document_count) > 0: shutil.rmtree(tmp_folder) st.sidebar.write("FILES DELETED SUCCESSFULLY !!!") else: st.sidebar.write("NO DOCUMENT FOUND TO DELETE !!! PLEASE UPLOAD DOCUMENTS TO START PROCESS !! ") if __name__ == "__main__": main()