import streamlit as st import concurrent.futures from concurrent.futures import ThreadPoolExecutor, as_completed from functools import partial import numpy as np from io import StringIO import sys import time import pandas as pd from pymongo import MongoClient import plotly.express as px from pinecone import Pinecone, ServerlessSpec import chromadb import requests from io import BytesIO from PyPDF2 import PdfReader import hashlib import os # File Imports from embedding import get_embeddings, get_image_embeddings, get_embed_chroma , imporve_text # Ensure this file/module is available from preprocess import filtering # Ensure this file/module is available from search import * # Chroma Connections client = chromadb.PersistentClient(path="embeddings") collection = client.get_or_create_collection(name="data", metadata={"hnsw:space": "l2"}) def generate_hash(content): return hashlib.sha256(content.encode('utf-8')).hexdigest() def get_key(link): text = '' try: # Fetch the PDF file from the URL response = requests.get(link) response.raise_for_status() # Raise an error for bad status codes # Use BytesIO to handle the PDF content in memory pdf_file = BytesIO(response.content) # Load the PDF file reader = PdfReader(pdf_file) num_pages = len(reader.pages) first_page_text = reader.pages[0].extract_text() if first_page_text: text += first_page_text last_page_text = reader.pages[-1].extract_text() if last_page_text: text += last_page_text except requests.exceptions.HTTPError as e: print(f'HTTP error occurred: {e}') except Exception as e: print(f'An error occurred: {e}') unique_key = generate_hash(text) return unique_key # Cosine Similarity Function def cosine_similarity(vec1, vec2): vec1 = np.array(vec1) vec2 = np.array(vec2) dot_product = np.dot(vec1, vec2.T) magnitude_vec1 = np.linalg.norm(vec1) magnitude_vec2 = np.linalg.norm(vec2) if magnitude_vec1 == 0 or magnitude_vec2 == 0: return 0.0 cosine_sim = dot_product / (magnitude_vec1 * magnitude_vec2) return cosine_sim def update_chroma(product_name, url, key, text, vector, log_area): id_list = [key + str(i) for i in range(len(text))] metadata_list = [ {'key': key, 'product_name': product_name, 'url': url, 'text': item } for item in text ] collection.upsert( ids=id_list, embeddings=vector, metadatas=metadata_list ) logger.write(f"\n\u2713 Updated DB - {url}\n\n") log_area.text(logger.getvalue()) # Logger class to capture output class StreamCapture: def __init__(self): self.output = StringIO() self._stdout = sys.stdout def __enter__(self): sys.stdout = self.output return self.output def __exit__(self, exc_type, exc_val, exc_tb): sys.stdout = self._stdout # Main Function def score(main_product, main_url, product_count, link_count, search, logger, log_area): data = {} similar_products = extract_similar_products(main_product)[:product_count] print("--> Fetching Manual Links") # Normal Filtering + Embedding ----------------------------------------------- if search == 'All': def process_product(product, search_function, main_product): search_result = search_function(product) return filtering(search_result, main_product, product, link_count) search_functions = { 'google': search_google, 'duckduckgo': search_duckduckgo, 'github': search_github, 'wikipedia': search_wikipedia } with ThreadPoolExecutor() as executor: future_to_product_search = { executor.submit(process_product, product, search_function, main_product): (product, search_name) for product in similar_products for search_name, search_function in search_functions.items() } for future in as_completed(future_to_product_search): product, search_name = future_to_product_search[future] try: if product not in data: data[product] = {} data[product] = future.result() except Exception as e: print(f"Error processing product {product} with {search_name}: {e}") else: for product in similar_products: if search == 'google': data[product] = filtering(search_google(product), main_product, product, link_count) elif search == 'duckduckgo': data[product] = filtering(search_duckduckgo(product), main_product, product, link_count) elif search == 'archive': data[product] = filtering(search_archive(product), main_product, product, link_count) elif search == 'github': data[product] = filtering(search_github(product), main_product, product, link_count) elif search == 'wikipedia': data[product] = filtering(search_wikipedia(product), main_product, product, link_count) # Filtered Link ----------------------------------------- logger.write("\n\n\u2713 Filtered Links\n") log_area.text(logger.getvalue()) # Main product Embeddings --------------------------------- logger.write("\n\n--> Creating Main product Embeddings\n") main_key = get_key(main_url) main_text, main_vector = get_embed_chroma(main_url) update_chroma(main_product, main_url, main_key, main_text, main_vector, log_area) # log_area.text(logger.getvalue()) print("\n\n\u2713 Main Product embeddings Created") logger.write("\n\n--> Creating Similar product Embeddings\n") log_area.text(logger.getvalue()) test_embedding = [0] * 768 for product in data: for link in data[product]: url, _ = link similar_key = get_key(url) res = collection.query( query_embeddings=[test_embedding], n_results=1, where={"key": similar_key}, ) if not res['distances'][0]: similar_text, similar_vector = get_embed_chroma(url) update_chroma(product, url, similar_key, similar_text, similar_vector, log_area) logger.write("\n\n\u2713 Similar Product embeddings Created\n") log_area.text(logger.getvalue()) top_similar = [] for idx, chunk in enumerate(main_vector): res = collection.query( query_embeddings=[chunk], n_results=1, where={"key": {'$ne': main_key}}, include=['metadatas', 'embeddings', 'distances'] ) top_similar.append((main_text[idx], chunk, res, res['distances'][0])) most_similar_items = sorted(top_similar, key=lambda x: x[3])[:top_similar_count] logger.write("--------------- DONE -----------------\n") log_area.text(logger.getvalue()) return most_similar_items # Streamlit Interface st.title("Check Infringement") # Inputs with st.sidebar: st.header("Product Information") main_product = st.text_input('Enter Main Product Name', 'Philips led 7w bulb') main_url = st.text_input('Enter Main Product Manual URL', 'https://www.assets.signify.com/is/content/PhilipsConsumer/PDFDownloads/Colombia/technical-sheets/ODLI20180227_001-UPD-es_CO-Ficha_Tecnica_LED_MR16_Master_7W_Dim_12V_CRI90.pdf') st.header("Search Settings") search_method = st.selectbox('Choose Search Engine', ['All', 'duckduckgo', 'google', 'archive', 'github', 'wikipedia']) product_count = st.number_input("Number of Similar Products", min_value=1, step=1, format="%i") link_count = st.number_input("Number of Links per Product", min_value=1, step=1, format="%i") need_image = st.selectbox("Process Images", ['True', 'False']) top_similar_count = st.number_input("Top Similarities to be Displayed", value=3, min_value=1, step=1, format="%i") if st.button('Check for Infringement'): global log_output # Placeholder for log output tab1, tab2 = st.tabs(["Output", "Console"]) with tab2: log_output = st.empty() with tab1: with st.spinner('Processing...'): with StreamCapture() as logger: top_similar_values = score(main_product, main_url, product_count, link_count, search_method, logger, log_output) st.success('Processing complete!') st.subheader("Cosine Similarity Scores") for main_text, main_vector, response, _ in top_similar_values: product_name = response['metadatas'][0][0]['product_name'] link = response['metadatas'][0][0]['url'] similar_text = response['metadatas'][0][0]['text'] cosine_score = cosine_similarity([main_vector], response['embeddings'][0])[0][0] # Display the product information with st.container(): st.markdown(f"### [Product: {product_name}]({link})") st.markdown(f"#### Cosine Score: {cosine_score:.4f}") col1, col2 = st.columns(2) with col1: st.markdown(f"**Main Text:** {imporve_text(main_text)}") with col2: st.markdown(f"**Similar Text:** {imporve_text(similar_text)}") st.markdown("---") if need_image == 'True': with st.spinner('Processing Images...'): emb_main = get_image_embeddings(main_product) similar_prod = extract_similar_products(main_product)[0] emb_similar = get_image_embeddings(similar_prod) similarity_matrix = np.zeros((5, 5)) for i in range(5): for j in range(5): similarity_matrix[i][j] = cosine_similarity([emb_main[i]], [emb_similar[j]])[0][0] st.subheader("Image Similarity") # Create an interactive heatmap fig = px.imshow(similarity_matrix, labels=dict(x=f"{similar_prod} Images", y=f"{main_product} Images", color="Similarity"), x=[f"Image {i+1}" for i in range(5)], y=[f"Image {i+1}" for i in range(5)], color_continuous_scale="Viridis") # Add title to the heatmap fig.update_layout(title="Image Similarity Heatmap") # Display the interactive heatmap st.plotly_chart(fig)