import streamlit as st from langchain.prompts import PromptTemplate # Recently the below import has been replaced by later one # from langchain.llms import CTransformers from langchain_community.llms import CTransformers #Function to get the response back def getLLMResponse(form_input,email_sender,email_recipient,email_style): #llm = OpenAI(temperature=.9, model="text-davinci-003") # Wrapper for Llama-2-7B-Chat, Running Llama 2 on CPU #Quantization is reducing model precision by converting weights from 16-bit floats to 8-bit integers, #enabling efficient deployment on resource-limited devices, reducing model size, and maintaining performance. #C Transformers offers support for various open-source models, #among them popular ones like Llama, GPT4All-J, MPT, and Falcon. #C Transformers is the Python library that provides bindings for transformer models implemented in C/C++ using the GGML library llm = CTransformers(model='models/llama-2-7b-chat.ggmlv3.q8_0.bin', #https://huggingface.co/TheBloke/Llama-2-7B-Chat-GGML/tree/main model_type='llama', config={'max_new_tokens': 256, 'temperature': 0.01}) #Template for building the PROMPT template = """ Write a email with {style} style and includes topic :{email_topic}.\n\nSender: {sender}\nRecipient: {recipient} \n\nEmail Text: """ #Creating the final PROMPT prompt = PromptTemplate( input_variables=["style","email_topic","sender","recipient"], template=template,) #Generating the response using LLM #Last week langchain has recommended to use 'invoke' function for the below please :) response=llm.invoke(prompt.format(email_topic=form_input,sender=email_sender,recipient=email_recipient,style=email_style)) print(response) return response st.set_page_config(page_title="Generate Emails", page_icon='📧', layout='centered', initial_sidebar_state='collapsed') st.header("Generate Emails 📧") form_input = st.text_area('Enter the email topic', height=275) #Creating columns for the UI - To receive inputs from user col1, col2, col3 = st.columns([10, 10, 5]) with col1: email_sender = st.text_input('Sender Name') with col2: email_recipient = st.text_input('Recipient Name') with col3: email_style = st.selectbox('Writing Style', ('Formal', 'Appreciating', 'Not Satisfied', 'Neutral'), index=0) submit = st.button("Generate") #When 'Generate' button is clicked, execute the below code if submit: st.write(getLLMResponse(form_input,email_sender,email_recipient,email_style))