import cv2
import numpy as np
import torch
import streamlit as st
import streamlit.components.v1 as components
from ultralytics import YOLO
from camera_input_live import camera_input_live
# Load YOLO fire detection model
model_path = "last.pt"
device = "cuda" if torch.cuda.is_available() else "cpu"
model = YOLO(model_path)
model.to(device)
# Streamlit app title
st.title("🔥 Live Fire Detection with Alarm 🔥")
st.subheader("Hold the camera towards potential fire sources to detect in real-time.")
# Load alarm sound (must be a direct MP3 URL)
alarm_url = "https://docs.google.com/uc?export=download&id=16IzsnQDmWkfYSeb_AjOTx79NEgkOpz88"
# JavaScript to auto-play alarm when fire is detected
js_code = f"""
"""
# Inject JavaScript
components.html(js_code, height=0)
# Capture live camera input
image = camera_input_live()
if image is not None:
# Convert the image to OpenCV format
bytes_data = image.getvalue()
cv2_img = cv2.imdecode(np.frombuffer(bytes_data, np.uint8), cv2.IMREAD_COLOR)
# Perform fire detection
results = model(cv2_img)
fire_present = False # Flag for fire detection
# Check if fire is detected
for result in results:
if len(result.boxes) > 0:
fire_present = True
break # No need to check further
# Display logs & trigger alarm
if fire_present:
st.error("🔥 Fire Detected! 🔥")
components.html("", height=0)
else:
st.success("✅ No Fire Detected")
components.html("", height=0)