import streamlit as st from PIL import Image import numpy as np import tensorflow as tf from tensorflow import keras st.title("BREAST CANCER BEGNIN or MALIGNANT CLASSIFICATION") st.write("19CSE363 : ARTIFICIAL INTELLIGENCE") st.write("DATASET : CBIS_DDSM") model = tf.keras.models.load_model('custom_final_new_upt.h5') uploaded_file = st.file_uploader("Upload an image", type=["jpg", "jpeg", "png"]) if uploaded_file is not None: image = Image.open(uploaded_file) st.image(image, caption="Uploaded Image", use_column_width=True) image = image.convert("RGB") img = image.resize((150, 150)) img_array = np.array(img) img_array = img_array.astype('float32') / 255.0 img_array = np.expand_dims(img_array, axis=0) predictions = model.predict(img_array) class_names = ['Begnin', 'Malignant'] predicted_class = class_names[np.argmax(predictions)] st.write(f"Prediction: {predicted_class}")