from langchain.tools.retriever import create_retriever_tool from query_vectordb import chat_model,init_vector_store,small_chat_model from langchain_community.agent_toolkits.load_tools import load_tools def retrieve_tool(): doc_store=init_vector_store() retriever = doc_store.as_retriever(search_type="similarity", search_kwargs={"k": 3,}) retriever_tool = create_retriever_tool( retriever, "VectorDB_search", "Use this tool when you need to answer questions about Samsung mobile phones, including their features, settings, or troubleshooting. For example: how to enable dark mode, battery saving tips, or camera settings.",) return retriever_tool def calculator_tool(): return load_tools(["llm-math"],llm=small_chat_model())[0]