import argparse import math import torch from gfpgan.archs.gfpganv1_clean_arch import GFPGANv1Clean def modify_checkpoint(checkpoint_bilinear, checkpoint_clean): for ori_k, ori_v in checkpoint_bilinear.items(): if 'stylegan_decoder' in ori_k: if 'style_mlp' in ori_k: # style_mlp_layers lr_mul = 0.01 prefix, name, idx, var = ori_k.split('.') idx = (int(idx) * 2) - 1 crt_k = f'{prefix}.{name}.{idx}.{var}' if var == 'weight': _, c_in = ori_v.size() scale = (1 / math.sqrt(c_in)) * lr_mul crt_v = ori_v * scale * 2**0.5 else: crt_v = ori_v * lr_mul * 2**0.5 checkpoint_clean[crt_k] = crt_v elif 'modulation' in ori_k: # modulation in StyleConv lr_mul = 1 crt_k = ori_k var = ori_k.split('.')[-1] if var == 'weight': _, c_in = ori_v.size() scale = (1 / math.sqrt(c_in)) * lr_mul crt_v = ori_v * scale else: crt_v = ori_v * lr_mul checkpoint_clean[crt_k] = crt_v elif 'style_conv' in ori_k: # StyleConv in style_conv1 and style_convs if 'activate' in ori_k: # FusedLeakyReLU # eg. style_conv1.activate.bias # eg. style_convs.13.activate.bias split_rlt = ori_k.split('.') if len(split_rlt) == 4: prefix, name, _, var = split_rlt crt_k = f'{prefix}.{name}.{var}' elif len(split_rlt) == 5: prefix, name, idx, _, var = split_rlt crt_k = f'{prefix}.{name}.{idx}.{var}' crt_v = ori_v * 2**0.5 # 2**0.5 used in FusedLeakyReLU c = crt_v.size(0) checkpoint_clean[crt_k] = crt_v.view(1, c, 1, 1) elif 'modulated_conv' in ori_k: # eg. style_conv1.modulated_conv.weight # eg. style_convs.13.modulated_conv.weight _, c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) crt_k = ori_k checkpoint_clean[crt_k] = ori_v * scale elif 'weight' in ori_k: crt_k = ori_k checkpoint_clean[crt_k] = ori_v * 2**0.5 elif 'to_rgb' in ori_k: # StyleConv in to_rgb1 and to_rgbs if 'modulated_conv' in ori_k: # eg. to_rgb1.modulated_conv.weight # eg. to_rgbs.5.modulated_conv.weight _, c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) crt_k = ori_k checkpoint_clean[crt_k] = ori_v * scale else: crt_k = ori_k checkpoint_clean[crt_k] = ori_v else: crt_k = ori_k checkpoint_clean[crt_k] = ori_v # end of 'stylegan_decoder' elif 'conv_body_first' in ori_k or 'final_conv' in ori_k: # key name name, _, var = ori_k.split('.') crt_k = f'{name}.{var}' # weight and bias if var == 'weight': c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) checkpoint_clean[crt_k] = ori_v * scale * 2**0.5 else: checkpoint_clean[crt_k] = ori_v * 2**0.5 elif 'conv_body' in ori_k: if 'conv_body_up' in ori_k: ori_k = ori_k.replace('conv2.weight', 'conv2.1.weight') ori_k = ori_k.replace('skip.weight', 'skip.1.weight') name1, idx1, name2, _, var = ori_k.split('.') crt_k = f'{name1}.{idx1}.{name2}.{var}' if name2 == 'skip': c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) checkpoint_clean[crt_k] = ori_v * scale / 2**0.5 else: if var == 'weight': c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) checkpoint_clean[crt_k] = ori_v * scale else: checkpoint_clean[crt_k] = ori_v if 'conv1' in ori_k: checkpoint_clean[crt_k] *= 2**0.5 elif 'toRGB' in ori_k: crt_k = ori_k if 'weight' in ori_k: c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) checkpoint_clean[crt_k] = ori_v * scale else: checkpoint_clean[crt_k] = ori_v elif 'final_linear' in ori_k: crt_k = ori_k if 'weight' in ori_k: _, c_in = ori_v.size() scale = 1 / math.sqrt(c_in) checkpoint_clean[crt_k] = ori_v * scale else: checkpoint_clean[crt_k] = ori_v elif 'condition' in ori_k: crt_k = ori_k if '0.weight' in ori_k: c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) checkpoint_clean[crt_k] = ori_v * scale * 2**0.5 elif '0.bias' in ori_k: checkpoint_clean[crt_k] = ori_v * 2**0.5 elif '2.weight' in ori_k: c_out, c_in, k1, k2 = ori_v.size() scale = 1 / math.sqrt(c_in * k1 * k2) checkpoint_clean[crt_k] = ori_v * scale elif '2.bias' in ori_k: checkpoint_clean[crt_k] = ori_v return checkpoint_clean if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--ori_path', type=str, help='Path to the original model') parser.add_argument('--narrow', type=float, default=1) parser.add_argument('--channel_multiplier', type=float, default=2) parser.add_argument('--save_path', type=str) args = parser.parse_args() ori_ckpt = torch.load(args.ori_path)['params_ema'] net = GFPGANv1Clean( 512, num_style_feat=512, channel_multiplier=args.channel_multiplier, decoder_load_path=None, fix_decoder=False, # for stylegan decoder num_mlp=8, input_is_latent=True, different_w=True, narrow=args.narrow, sft_half=True) crt_ckpt = net.state_dict() crt_ckpt = modify_checkpoint(ori_ckpt, crt_ckpt) print(f'Save to {args.save_path}.') torch.save(dict(params_ema=crt_ckpt), args.save_path, _use_new_zipfile_serialization=False)