import gradio as gr from huggingface_hub import InferenceClient from model import * """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") def evaluate_response(problem): # problem=b'what is angle x if angle y is 60 degree and angle z in 60 degree of a traingle' problem=problem.decode('utf-8') results, answers = [[],[]] messages = [{"role": "user", "content": problem }] query_prompt = tokenizer.apply_chat_template(messages, tokenize=False) raw_output = pipeline(query_prompt, max_new_tokens=2048, do_sample=True, temperature=0.9, return_full_text=False) raw_output = raw_output[0]['generated_text'] # result_output, code_output = process_output(raw_output) return raw_output def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ # demo = gr.ChatInterface( # evaluate_response, # additional_inputs=[ # gr.Textbox(value="You are a friendly Chatbot.", label="System message"), # gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), # gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), # gr.Slider( # minimum=0.1, # maximum=1.0, # value=0.95, # step=0.05, # label="Top-p (nucleus sampling)", # ), # ], # ) demo = gr.Interface( fn=evaluate_response, inputs=[gr.Textbox(label="Question")], outputs=gr.Textbox(label="Answer"), title="Question and Answer Interface", description="Enter a question." ) if __name__ == "__main__": demo.launch()