import random import numpy as np import torch from PIL import Image def cvtColor(image): if len(np.shape(image)) == 3 and np.shape(image)[2] == 3: return image else: image = image.convert('RGB') return image def resize_image(image, size, letterbox_image): iw, ih = image.size w, h = size if letterbox_image: scale = min(w / iw, h / ih) nw = int(iw * scale) nh = int(ih * scale) image = image.resize((nw, nh), Image.BICUBIC) new_image = Image.new('RGB', size, (128, 128, 128)) new_image.paste(image, ((w - nw) // 2, (h - nh) // 2)) else: new_image = image.resize((w, h), Image.BICUBIC) return new_image def get_classes(classes_path): with open(classes_path, encoding='utf-8') as f: class_names = f.readlines() class_names = [c.strip() for c in class_names] return class_names, len(class_names) def get_anchors(anchors_path): '''loads the anchors from a file''' with open(anchors_path, encoding='utf-8') as f: anchors = f.readline() anchors = [float(x) for x in anchors.split(',')] anchors = np.array(anchors).reshape(-1, 2) return anchors, len(anchors) def get_lr(optimizer): for param_group in optimizer.param_groups: return param_group['lr'] def seed_everything(seed=11): random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False def worker_init_fn(worker_id, rank, seed): worker_seed = rank + seed random.seed(worker_seed) np.random.seed(worker_seed) torch.manual_seed(worker_seed) def preprocess_input(image): image /= 255.0 return image def show_config(**kwargs): print('Configurations:') print('-' * 70) print('|%25s | %40s|' % ('keys', 'values')) print('-' * 70) for key, value in kwargs.items(): print('|%25s | %40s|' % (str(key), str(value))) print('-' * 70)