import cv2 import torch import numpy as np import pycocotools.mask as mask_utils # transpose FLIP_LEFT_RIGHT = 0 FLIP_TOP_BOTTOM = 1 class MaskList(object): """ This class is unfinished and not meant for use yet It is supposed to contain the binary masks for all instances in a list of 2D tensors (H, W) """ def __init__(self, masks, size, mode): assert(isinstance(masks, list)) assert(mode in ['mask', 'rle']) self.masks = masks self.size = size # (image_width, image_height) self.mode = mode def transpose(self, method): assert (self.mode == "mask"), "RLE masks cannot be transposed. Please convert them to binary first." if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) # width, height = self.size masks = np.array(self.masks) if masks.ndim == 2: masks = np.expand_dims(masks, axis=0) if method == FLIP_LEFT_RIGHT: masks = np.flip(masks, axis=2) elif method == FLIP_TOP_BOTTOM: masks = np.flip(masks, axis=1) flipped_masks = np.split(masks, masks.shape[0]) flipped_masks = [mask.squeeze(0) for mask in flipped_masks] return MaskList(flipped_masks, self.size, self.mode) def resize(self, size, *args, **kwargs): """ Resize the binary mask. :param size: tuple, (image_width, image_height) :param args: :param kwargs: :return: """ assert(self.mode == "mask"), "RLE masks cannot be resized. Please convert them to binary first." cat_mask = np.array(self.masks) cat_mask = cat_mask.transpose(1, 2, 0) cat_mask *= 255 cat_mask = cat_mask.astype(np.uint8) resized_mask = cv2.resize(cat_mask, size) if resized_mask.ndim == 2: resized_mask = np.expand_dims(resized_mask, axis=2) try: resized_mask = resized_mask.transpose(2, 0, 1) except ValueError: print("?") resized_mask = resized_mask.astype(int) resized_mask = resized_mask // 255 # # visualize to check mask correctness # from matplotlib import pyplot as plt # plt.figure() # plt.imshow(resized_mask[0]*255, cmap='gray') # plt.show() mask_list = np.split(resized_mask, resized_mask.shape[0]) mask_list = [mask.squeeze(0) for mask in mask_list] return MaskList(mask_list, size, "mask") def pad(self, size): """ pad the binary masks according to the new size. New size must be larger than original size in all dimensions :param size: New image size, (image_width, image_height) :return: """ assert(size[0] >= self.size[0] and size[1] >= self.size[1]), "New size must be larger than original size in all dimensions" cat_mask = np.array(self.masks) if cat_mask.ndim == 2: cat_mask = np.expand_dims(cat_mask, axis=0) padded_mask = np.zeros([len(self.masks), size[1], size[0]]) padded_mask[:, :cat_mask.shape[1], :cat_mask.shape[2]] = cat_mask # # visualize to check mask correctness # from matplotlib import pyplot as plt # plt.figure() # plt.imshow(padded_mask[1]*255, cmap='gray') # plt.show() mask_list = np.split(padded_mask, padded_mask.shape[0]) mask_list = [mask.squeeze(0) for mask in mask_list] return MaskList(mask_list, size, "mask") def convert(self, mode): """ Convert mask from between mode "mask" and mode "rle" :param mode: :return: """ if mode == self.mode: return self elif mode == "rle" and self.mode == "mask": # use pycocotools to encode binary masks to rle rle_mask_list = mask_utils.encode(np.asfortranarray(np.array(self.masks).transpose(1, 2, 0).astype(np.uint8))) return MaskList(rle_mask_list, self.size, "rle") elif mode == "mask" and self.mode == "rle": # use pycocotools to decode rle to binary masks bimasks = mask_utils.decode(self.masks) mask_list = np.split(bimasks.transpose(2, 0, 1), bimasks.shape[2]) mask_list = [mask.squeeze(0) for mask in mask_list] return MaskList(mask_list, self.size, "mask") def bbox(self, bbox_mode="xyxy"): """ Generate a bounding box according to the binary mask :param bbox_mode: :return: """ pass def __len__(self): return len(self.masks) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_masks={}, ".format(len(self)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s class Polygons(object): """ This class holds a set of polygons that represents a single instance of an object mask. The object can be represented as a set of polygons """ def __init__(self, polygons, size, mode): # assert isinstance(polygons, list), '{}'.format(polygons) if isinstance(polygons, list): polygons = [torch.as_tensor(p, dtype=torch.float32) for p in polygons] elif isinstance(polygons, Polygons): polygons = polygons.polygons self.polygons = polygons self.size = size self.mode = mode def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) flipped_polygons = [] width, height = self.size if method == FLIP_LEFT_RIGHT: dim = width idx = 0 elif method == FLIP_TOP_BOTTOM: dim = height idx = 1 for poly in self.polygons: p = poly.clone() TO_REMOVE = 1 p[idx::2] = dim - poly[idx::2] - TO_REMOVE flipped_polygons.append(p) return Polygons(flipped_polygons, size=self.size, mode=self.mode) def crop(self, box): w, h = box[2] - box[0], box[3] - box[1] # TODO chck if necessary w = max(w, 1) h = max(h, 1) cropped_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] = p[0::2] - box[0] # .clamp(min=0, max=w) p[1::2] = p[1::2] - box[1] # .clamp(min=0, max=h) cropped_polygons.append(p) return Polygons(cropped_polygons, size=(w, h), mode=self.mode) def resize(self, size, *args, **kwargs): ratios = tuple(float(s) / float(s_orig) for s, s_orig in zip(size, self.size)) if ratios[0] == ratios[1]: ratio = ratios[0] scaled_polys = [p * ratio for p in self.polygons] return Polygons(scaled_polys, size, mode=self.mode) ratio_w, ratio_h = ratios scaled_polygons = [] for poly in self.polygons: p = poly.clone() p[0::2] *= ratio_w p[1::2] *= ratio_h scaled_polygons.append(p) return Polygons(scaled_polygons, size=size, mode=self.mode) def convert(self, mode): width, height = self.size if mode == "mask": rles = mask_utils.frPyObjects( [p.detach().numpy() for p in self.polygons], height, width ) rle = mask_utils.merge(rles) mask = mask_utils.decode(rle) mask = torch.from_numpy(mask) # TODO add squeeze? return mask def __repr__(self): s = self.__class__.__name__ + "(" s += "num_polygons={}, ".format(len(self.polygons)) s += "image_width={}, ".format(self.size[0]) s += "image_height={}, ".format(self.size[1]) s += "mode={})".format(self.mode) return s class SegmentationMask(object): """ This class stores the segmentations for all objects in the image """ def __init__(self, polygons, size, mode=None): """ Arguments: polygons: a list of list of lists of numbers. The first level of the list correspond to individual instances, the second level to all the polygons that compose the object, and the third level to the polygon coordinates. """ assert isinstance(polygons, list) self.polygons = [Polygons(p, size, mode) for p in polygons] self.size = size self.mode = mode def transpose(self, method): if method not in (FLIP_LEFT_RIGHT, FLIP_TOP_BOTTOM): raise NotImplementedError( "Only FLIP_LEFT_RIGHT and FLIP_TOP_BOTTOM implemented" ) flipped = [] for polygon in self.polygons: flipped.append(polygon.transpose(method)) return SegmentationMask(flipped, size=self.size, mode=self.mode) def crop(self, box): w, h = box[2] - box[0], box[3] - box[1] cropped = [] for polygon in self.polygons: cropped.append(polygon.crop(box)) return SegmentationMask(cropped, size=(w, h), mode=self.mode) def resize(self, size, *args, **kwargs): scaled = [] for polygon in self.polygons: scaled.append(polygon.resize(size, *args, **kwargs)) return SegmentationMask(scaled, size=size, mode=self.mode) def to(self, *args, **kwargs): return self def __getitem__(self, item): if isinstance(item, (int, slice)): selected_polygons = [self.polygons[item]] else: # advanced indexing on a single dimension selected_polygons = [] if isinstance(item, torch.Tensor) and item.dtype == torch.bool: item = item.nonzero() item = item.squeeze(1) if item.numel() > 0 else item item = item.tolist() for i in item: selected_polygons.append(self.polygons[i]) return SegmentationMask(selected_polygons, size=self.size, mode=self.mode) def __iter__(self): return iter(self.polygons) def __repr__(self): s = self.__class__.__name__ + "(" s += "num_instances={}, ".format(len(self.polygons)) s += "image_width={}, ".format(self.size[0]) s += "image_height={})".format(self.size[1]) return s