File size: 22,665 Bytes
65c1b40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
import gradio as gr
import pixeltable as pxt
from pixeltable.iterators import DocumentSplitter, FrameIterator, StringSplitter
from pixeltable.functions.huggingface import sentence_transformer, clip_image, clip_text
from pixeltable.functions.video import extract_audio
from pixeltable.functions.audio import get_metadata
from pixeltable.functions import openai
import numpy as np
import PIL.Image
import os
import getpass
import requests
import tempfile
from datetime import datetime

# Configuration
PIXELTABLE_MEDIA_DIR = os.path.expanduser("~/.pixeltable/media")
MAX_TOKENS_DEFAULT = 300
TEMPERATURE_DEFAULT = 0.7
CHUNK_SIZE_DEFAULT = 300

# Initialize API keys
def init_api_keys():
    if 'OPENAI_API_KEY' not in os.environ:
        os.environ['OPENAI_API_KEY'] = getpass.getpass('OpenAI API key:')

# Embedding Functions
@pxt.expr_udf
def e5_embed(text: str) -> np.ndarray:
    return sentence_transformer(text, model_id='intfloat/e5-large-v2')

@pxt.expr_udf
def embed_image(img: PIL.Image.Image):
    return clip_image(img, model_id='openai/clip-vit-base-patch32')

@pxt.expr_udf
def str_embed(s: str):
    return clip_text(s, model_id='openai/clip-vit-base-patch32')

# Common Utilities
def initialize_pixeltable(dir_name='unified_app'):
    """Initialize Pixeltable directory"""
    pxt.drop_dir(dir_name, force=True)
    pxt.create_dir(dir_name)

@pxt.udf
def create_prompt(top_k_list: list[dict], question: str) -> str:
    """Create a standardized prompt format"""
    concat_top_k = '\n\n'.join(elt['text'] for elt in reversed(top_k_list))
    return f'''
    PASSAGES:
    {concat_top_k}
    QUESTION:
    {question}'''

@pxt.udf(return_type=pxt.AudioType())
def generate_audio(script: str, voice: str, api_key: str):
    """Generate audio from text using OpenAI's API"""
    if not script or not voice:
        return None
    
    try:
        response = requests.post(
            "https://api.openai.com/v1/audio/speech",
            headers={"Authorization": f"Bearer {api_key}"},
            json={"model": "tts-1", "input": script, "voice": voice}
        )
        
        if response.status_code == 200:
            temp_dir = os.path.join(os.getcwd(), "temp")
            os.makedirs(temp_dir, exist_ok=True)
            temp_file = os.path.join(temp_dir, f"audio_{os.urandom(8).hex()}.mp3")
            
            with open(temp_file, 'wb') as f:
                f.write(response.content)
            return temp_file
    except Exception as e:
        print(f"Error in audio synthesis: {e}")
    return None

# Document Processing
class DocumentProcessor:
    @staticmethod
    def process_documents(pdf_files, chunk_limit, chunk_separator):
        """Process uploaded documents for chatbot functionality"""
        initialize_pixeltable()
        
        docs = pxt.create_table(
            'unified_app.documents',
            {'document': pxt.DocumentType(nullable=True)}
        )
        
        docs.insert({'document': file.name} for file in pdf_files if file.name.endswith('.pdf'))
        
        chunks = pxt.create_view(
            'unified_app.chunks',
            docs,
            iterator=DocumentSplitter.create(
                document=docs.document,
                separators=chunk_separator,
                limit=chunk_limit if chunk_separator in ["token_limit", "char_limit"] else None
            )
        )
        
        chunks.add_embedding_index('text', string_embed=e5_embed)
        return "Documents processed successfully. You can start asking questions."

    @staticmethod
    def get_document_answer(question):
        """Get answer from processed documents"""
        try:
            chunks = pxt.get_table('unified_app.chunks')
            sim = chunks.text.similarity(question)
            relevant_chunks = chunks.order_by(sim, asc=False).limit(5).select(chunks.text).collect()
            context = "\n\n".join(chunk['text'] for chunk in relevant_chunks)
            
            temp_table = pxt.create_table(
                'unified_app.temp_response',
                {
                    'question': pxt.StringType(),
                    'context': pxt.StringType()
                }
            )
            
            temp_table.insert([{'question': question, 'context': context}])
            
            temp_table['response'] = openai.chat_completions(
                messages=[
                    {
                        'role': 'system',
                        'content': 'Answer the question based only on the provided context. If the context doesn\'t contain enough information, say so.'
                    },
                    {
                        'role': 'user',
                        'content': f"Context:\n{context}\n\nQuestion: {question}"
                    }
                ],
                model='gpt-4o-mini-2024-07-18'
            )
            
            answer = temp_table.select(
                answer=temp_table.response.choices[0].message.content
            ).tail(1)['answer'][0]
            
            pxt.drop_table('unified_app.temp_response', force=True)
            return answer
            
        except Exception as e:
            return f"Error: {str(e)}"

# Call Analysis
class CallAnalyzer:
    @staticmethod
    def process_call(video_file):
        """Process and analyze call recordings"""
        try:
            calls = pxt.create_table(
                'unified_app.calls',
                {"video": pxt.VideoType(nullable=True)}
            )
            
            calls['audio'] = extract_audio(calls.video, format='mp3')
            calls['transcription'] = openai.transcriptions(audio=calls.audio, model='whisper-1')
            calls['text'] = calls.transcription.text
            
            sentences = pxt.create_view(
                'unified_app.sentences',
                calls,
                iterator=StringSplitter.create(text=calls.text, separators='sentence')
            )
            
            sentences.add_embedding_index('text', string_embed=e5_embed)
            
            @pxt.udf
            def generate_insights(text: str) -> list[dict]:
                return [
                    {'role': 'system', 'content': 'Analyze this call transcript and provide key insights:'},
                    {'role': 'user', 'content': text}
                ]
            
            calls['insights_prompt'] = generate_insights(calls.text)
            calls['insights'] = openai.chat_completions(
                messages=calls.insights_prompt,
                model='gpt-4o-mini-2024-07-18'
            ).choices[0].message.content
            
            calls.insert([{"video": video_file}])
            
            result = calls.select(calls.text, calls.audio, calls.insights).tail(1)
            return result['text'][0], result['audio'][0], result['insights'][0]
            
        except Exception as e:
            return f"Error processing call: {str(e)}", None, None

# Video Search
class VideoSearcher:
    @staticmethod
    def process_video(video_file):
        """Process video for searching"""
        try:
            initialize_pixeltable()
            videos = pxt.create_table('unified_app.videos', {'video': pxt.VideoType()})
            
            frames = pxt.create_view(
                'unified_app.frames',
                videos,
                iterator=FrameIterator.create(video=videos.video, fps=1)
            )
            
            frames.add_embedding_index('frame', string_embed=str_embed, image_embed=embed_image)
            videos.insert([{'video': video_file.name}])
            
            return "Video processed and indexed for search."
        except Exception as e:
            return f"Error processing video: {str(e)}"

    @staticmethod
    def search_video(search_type, text_query=None, image_query=None):
        """Search processed video frames"""
        try:
            frames = pxt.get_table('unified_app.frames')
            
            if search_type == "Text" and text_query:
                sim = frames.frame.similarity(text_query)
            elif search_type == "Image" and image_query is not None:
                sim = frames.frame.similarity(image_query)
            else:
                return []
                
            results = frames.order_by(sim, asc=False).limit(5).select(frames.frame).collect()
            return [row['frame'] for row in results]
        except Exception as e:
            print(f"Search error: {str(e)}")
            return []

# Gradio Interface
def create_interface():
    with gr.Blocks(theme=gr.themes.Base()) as demo:
        # Header
        gr.HTML(
            """
            <div style="text-align: left; margin-bottom: 1rem;">
                <img src="https://raw.githubusercontent.com/pixeltable/pixeltable/main/docs/source/data/pixeltable-logo-large.png" alt="Pixeltable" style="max-width: 150px;" />
            </div>
            """
        )

        gr.Markdown(
            """
            # Multimodal Powerhouse
            """
        )

        gr.HTML(
            """
            <p>
                <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">Pixeltable</a> 
                is a declarative interface for working with text, images, embeddings, and video, enabling you to store, transform, index, and iterate on data.
            </p>
            
            <div style="background-color: #E5DDD4; border: 1px solid #e9ecef; border-radius: 8px; padding: 15px; margin: 15px 0;">
                <strong>โš ๏ธ Note:</strong> This app runs best with GPU. For optimal performance, consider 
                <a href="https://huggingface.co/spaces/Pixeltable/Multimodal-Processing-Suite?duplicate=true" target="_blank" style="color: #F25022; text-decoration: none; font-weight: bold;">duplicating this space</a> 
                to run locally or with better computing resources.
            </div>
            """
        )

        # Documentation Sections
        with gr.Row():
            with gr.Column():
                with gr.Accordion("๐ŸŽฏ What This App Does", open=False):
                    gr.Markdown("""
                    1. ๐Ÿ“š **Document Processing**
                       * Chat with your documents using RAG
                       * Process multiple document formats
                       * Extract key insights
                    
                    2. ๐ŸŽฅ **Video Analysis**
                       * Text and image-based video search
                       * Frame extraction and indexing
                       * Visual content discovery
                    
                    3. ๐ŸŽ™๏ธ **Call Analysis**
                       * Automatic transcription
                       * Key insight extraction
                       * Audio processing
                    """)
            
            with gr.Column():
                with gr.Accordion("โš™๏ธ How It Works", open=False):
                    gr.Markdown("""
                    1. ๐Ÿ”„ **Data Processing**
                       * Chunking and indexing documents
                       * Embedding generation for search
                       * Multi-modal data handling
                    
                    2. ๐Ÿค– **AI Integration**
                       * LLM-powered analysis
                       * Speech-to-text conversion
                       * Semantic search capabilities
                    
                    3. ๐Ÿ“Š **Storage & Retrieval**
                       * Efficient data organization
                       * Quick content retrieval
                       * Structured data management
                    """)
        
        with gr.Tabs():
            # Document Chat Tab
            with gr.TabItem("๐Ÿ“š Document Chat"):
                with gr.Row():
                    with gr.Column():
                        doc_files = gr.File(label="Upload Documents", file_count="multiple")
                        chunk_size = gr.Slider(
                            minimum=100,
                            maximum=500,
                            value=CHUNK_SIZE_DEFAULT,
                            label="Chunk Size"
                        )
                        chunk_type = gr.Dropdown(
                            choices=["token_limit", "char_limit", "sentence", "paragraph"],
                            value="token_limit",
                            label="Chunking Method"
                        )
                        process_docs_btn = gr.Button("Process Documents")
                        process_status = gr.Textbox(label="Status")
                    with gr.Column():
                        chatbot = gr.Chatbot(label="Document Chat")
                        msg = gr.Textbox(label="Ask a question")
                        send_btn = gr.Button("Send")
            
            # Call Analysis Tab
            with gr.TabItem("๐ŸŽ™๏ธ Call Analysis"):
                with gr.Row():
                    with gr.Column():
                        call_upload = gr.Video(label="Upload Call Recording")
                        analyze_btn = gr.Button("Analyze Call")
                    with gr.Column():
                        with gr.Tabs():
                            with gr.TabItem("๐Ÿ“ Transcript"):
                                transcript = gr.Textbox(label="Transcript", lines=10)
                            with gr.TabItem("๐Ÿ’ก Insights"):
                                insights = gr.Textbox(label="Key Insights", lines=10)
                            with gr.TabItem("๐Ÿ”Š Audio"):
                                audio_output = gr.Audio(label="Extracted Audio")
            
            # Video Search Tab
            with gr.TabItem("๐ŸŽฅ Video Search"):
                with gr.Row():
                    with gr.Column():
                        video_upload = gr.File(label="Upload Video")
                        process_video_btn = gr.Button("Process Video")
                        video_status = gr.Textbox(label="Processing Status")
                        search_type = gr.Radio(
                            choices=["Text", "Image"],
                            label="Search Type",
                            value="Text"
                        )
                        text_input = gr.Textbox(label="Text Query")
                        image_input = gr.Image(label="Image Query", type="pil", visible=False)
                        search_btn = gr.Button("Search")
                    with gr.Column():
                        results_gallery = gr.Gallery(label="Search Results")

        # Event Handlers
        def document_chat(message, chat_history):
            bot_message = DocumentProcessor.get_document_answer(message)
            chat_history.append((message, bot_message))
            return "", chat_history

        def update_search_type(choice):
            return {
                text_input: gr.update(visible=choice=="Text"),
                image_input: gr.update(visible=choice=="Image")
            }

        # Connect Events
        process_docs_btn.click(
            DocumentProcessor.process_documents,
            inputs=[doc_files, chunk_size, chunk_type],
            outputs=[process_status]
        )
        
        send_btn.click(
            document_chat,
            inputs=[msg, chatbot],
            outputs=[msg, chatbot]
        )
        
        analyze_btn.click(
            CallAnalyzer.process_call,
            inputs=[call_upload],
            outputs=[transcript, audio_output, insights]
        )
        
        process_video_btn.click(
            VideoSearcher.process_video,
            inputs=[video_upload],
            outputs=[video_status]
        )
        
        search_type.change(
            update_search_type,
            search_type,
            [text_input, image_input]
        )
        
        search_btn.click(
            VideoSearcher.search_video,
            inputs=[search_type, text_input, image_input],
            outputs=[results_gallery]
        )

        # Related Pixeltable Spaces
        gr.Markdown("## ๐ŸŒŸ Explore More Pixeltable Apps")
        
        with gr.Row():
            with gr.Column():
                gr.HTML(
                    """
                    <div style="border: 1px solid #ddd; padding: 15px; border-radius: 8px; margin-bottom: 10px;">
                        <h3>๐Ÿ“š Document & Text Processing</h3>
                        <ul style="list-style-type: none; padding-left: 0;">
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/Multi-LLM-RAG-with-Groundtruth-Comparison" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐Ÿค– Multi-LLM RAG Comparison
                                </a>
                            </li>
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/Document-to-Audio-Synthesis" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐Ÿ”Š Document to Audio Synthesis
                                </a>
                            </li>
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/Prompt-Engineering-and-LLM-Studio" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐Ÿ’ก Prompt Engineering Studio
                                </a>
                            </li>
                        </ul>
                    </div>
                    """
                )
            
            with gr.Column():
                gr.HTML(
                    """
                    <div style="border: 1px solid #ddd; padding: 15px; border-radius: 8px; margin-bottom: 10px;">
                        <h3>๐ŸŽฅ Video & Audio Processing</h3>
                        <ul style="list-style-type: none; padding-left: 0;">
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/video-to-social-media-post-generator" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐Ÿ“ฑ Social Media Post Generator
                                </a>
                            </li>
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/Call-Analysis-AI-Tool" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐ŸŽ™๏ธ Call Analysis Tool
                                </a>
                            </li>
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/object-detection-in-videos-with-yolox" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐Ÿ” Video Object Detection
                                </a>
                            </li>
                        </ul>
                    </div>
                    """
                )
            
            with gr.Column():
                gr.HTML(
                    """
                    <div style="border: 1px solid #ddd; padding: 15px; border-radius: 8px; margin-bottom: 10px;">
                        <h3>๐ŸŽฎ Interactive Applications</h3>
                        <ul style="list-style-type: none; padding-left: 0;">
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/AI-RPG-Adventure" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐ŸŽฒ AI RPG Adventure
                                </a>
                            </li>
                            <li style="margin-bottom: 10px;">
                                <a href="https://huggingface.co/spaces/Pixeltable/AI-Financial-Analysis-Platform" target="_blank" style="color: #F25022; text-decoration: none;">
                                    ๐Ÿ“ˆ Financial Analysis Platform
                                </a>
                            </li>
                        </ul>
                    </div>
                    """
                )

        gr.HTML(
                """
                <div style="margin-top: 2rem; padding-top: 1rem; border-top: 1px solid #e5e7eb;">
                    <div style="display: flex; justify-content: space-between; align-items: center; flex-wrap: wrap; gap: 1rem;">
                        <div style="flex: 1;">
                            <h4 style="margin: 0; color: #374151;">๐Ÿš€ Built with Pixeltable</h4>
                            <p style="margin: 0.5rem 0; color: #6b7280;">
                                Open Source AI Data infrastructure.
                            </p>
                        </div>
                        <div style="flex: 1;">
                            <h4 style="margin: 0; color: #374151;">๐Ÿ”— Resources</h4>
                            <div style="display: flex; gap: 1.5rem; margin-top: 0.5rem;">
                                <a href="https://github.com/pixeltable/pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none;">
                                    ๐Ÿ’ป GitHub
                                </a>
                                <a href="https://docs.pixeltable.com" target="_blank" style="color: #4F46E5; text-decoration: none;">
                                    ๐Ÿ“š Documentation
                                </a>
                                <a href="https://huggingface.co/Pixeltable" target="_blank" style="color: #4F46E5; text-decoration: none;">
                                    ๐Ÿค— Hugging Face
                                </a>
                            </div>
                        </div>
                    </div>
                    <p style="margin: 1rem 0 0; text-align: center; color: #9CA3AF; font-size: 0.875rem;">
                        ยฉ 2024 Pixeltable | Apache License 2.0
                    </p>
                </div>
                """
            )
    
    return demo

if __name__ == "__main__":
    init_api_keys()
    demo = create_interface()
    demo.launch(
        allowed_paths=[PIXELTABLE_MEDIA_DIR],
        show_api=False
    )