import gradio as gr import pixeltable as pxt from pixeltable.iterators import FrameIterator from datetime import datetime import PIL.Image from pixeltable.functions import openai, image import os import getpass import requests import tempfile import json import math from typing import Dict, Optional # Constants MAX_VIDEO_SIZE_MB = 35 MAX_FRAMES = 5 # Prompt templates PROMPT_TEMPLATES = { "descriptive": { "name": "Descriptive Analysis", "system_prompt": """You are a video content analyzer. Please generate a short and concise compelling description that summarizes the overall action and content of this video sequence. Focus on describing the key events, changes, and movements you observe across all frames.""", "description": "Generates a clear, factual description of the video content" }, "cinematic": { "name": "Cinematic Analysis (Christopher Nolan style)", "system_prompt": """You are Christopher Nolan, the acclaimed filmmaker. Describe this visual sequence as one continuous, flowing narrative moment, as you would when discussing a pivotal scene from one of your films. Focus on psychological undercurrents, visual symbolism, and the deeper thematic implications of what unfolds.""", "description": "Analyzes the video from a filmmaker's perspective with artistic interpretation" }, "documentary": { "name": "Documentary Style (David Attenborough)", "system_prompt": """You are David Attenborough, the renowned naturalist and documentarian. Narrate this sequence with your characteristic blend of scientific insight and storytelling prowess. Focus on the compelling details that bring the subject matter to life, while maintaining your signature warm, authoritative tone.""", "description": "Creates a nature documentary style narration" }, "technical": { "name": "Technical Analysis", "system_prompt": """You are a technical video analyst. Break down this sequence with precise attention to technical details including movement patterns, visual composition, lighting conditions, and any notable technical aspects of the footage.""", "description": "Provides detailed technical analysis of the video" }, "labelling": { "name": "Labelling and Annotation", "system_prompt": """You are a high-precision video labeling system designed to replace human labelers. Analyze this sequence with extreme attention to detail, focusing on: 1. Object identification and tracking 2. Precise descriptions of movements and actions 3. Spatial relationships between objects 4. Changes in object positions and behaviors Your goal is to provide detailed, accurate annotations that could be used for training computer vision models or validating automated systems.""", "description": "Provides detailed object and action annotations for machine learning purposes" } } # Voice options VOICE_OPTIONS = { "alloy": "Alloy (Balanced)", "echo": "Echo (Smooth)", "fable": "Fable (Expressive)", "onyx": "Onyx (Authoritative)", "nova": "Nova (Friendly)", "shimmer": "Shimmer (Warm)" } def process_video(video_file: gr.Video, api_key: str, prompt_template: str, voice_choice: str, progress: Optional[gr.Progress] = None) -> tuple[str, str]: """Process video with given parameters. Creates new Pixeltable instance for each request.""" try: if not video_file or not api_key: return "Please provide both video file and API key.", None # Set API key os.environ['OPENAI_API_KEY'] = api_key video_path = video_file.name if hasattr(video_file, 'name') else str(video_file) # Check file size file_size = os.path.getsize(video_path) / (1024 * 1024) if file_size > MAX_VIDEO_SIZE_MB: return f"Error: Video file size ({file_size:.1f}MB) exceeds limit of {MAX_VIDEO_SIZE_MB}MB", None if progress: progress(0.1, desc="Initializing...") # Create unique directory for this processing session session_id = datetime.now().strftime('%Y%m%d_%H%M%S') dir_name = f'video_processor_{session_id}' # Initialize Pixeltable pxt.drop_dir(dir_name, force=True) pxt.create_dir(dir_name) # Create main video table video_table = pxt.create_table( f'{dir_name}.videos', { "video": pxt.Video, "timestamp": pxt.Timestamp } ) # Create frames view frames_view = pxt.create_view( f'{dir_name}.frames', video_table, iterator=FrameIterator.create(video=video_table.video, fps=1) ) frames_view.add_computed_column(encoded_frame=image.b64_encode(frames_view.frame)) if progress: progress(0.2, desc="Processing video...") # Insert video video_table.insert([{ "video": video_path, "timestamp": datetime.now(), }]) if progress: progress(0.4, desc="Extracting frames...") # Get frames frames = frames_view.select(frames_view.encoded_frame).collect() frame_list = [f["encoded_frame"] for f in frames] def select_representative_frames(frames: list, num_frames: int = MAX_FRAMES) -> list: total_frames = len(frames) if total_frames <= num_frames: return frames interval = total_frames / num_frames selected_indices = [math.floor(i * interval) for i in range(num_frames)] return [frames[i] for i in selected_indices] selected_frames = select_representative_frames(frame_list) if progress: progress(0.6, desc="Analyzing with GPT-4 Vision...") def create_frame_content(frames: list) -> list: content = [ { "type": "text", "text": "This is a sequence of frames from a video. Please analyze the overall action and content across all frames:" } ] for i, frame in enumerate(frames, 1): content.extend([ { "type": "text", "text": f"Frame {i}:" }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{frame}" } } ]) return content # Create frame content and generate description frame_content = create_frame_content(selected_frames) template = PROMPT_TEMPLATES[prompt_template] messages = [ { 'role': 'system', 'content': template["system_prompt"] }, { 'role': 'user', 'content': frame_content } ] video_table.add_computed_column(response=openai.chat_completions( messages=messages, model='gpt-4o', max_tokens=500 )) video_table.add_computed_column(content=video_table.response.choices[0].message.content.astype(pxt.StringType())) if progress: progress(0.8, desc="Generating audio...") # Generate voiceover @pxt.udf def generate_voiceover(script: str, voice: str) -> str: try: response = requests.post( "https://api.openai.com/v1/audio/speech", headers={"Authorization": f"Bearer {os.environ['OPENAI_API_KEY']}"}, json={ "model": "tts-1", "input": script, "voice": voice, } ) if response.status_code != 200: raise Exception(f"TTS API error: {response.status_code} - {response.text}") # Create temp file in system temp directory temp_dir = tempfile.gettempdir() temp_audio_path = os.path.join(temp_dir, f"voiceover_{session_id}.mp3") with open(temp_audio_path, 'wb') as f: f.write(response.content) return temp_audio_path except Exception as e: print(f"Error generating audio: {e}") return None # Generate audio and get results video_table.add_computed_column(audio_path=generate_voiceover(video_table.content, voice_choice)) results = video_table.select( video_table.content, video_table.audio_path ).tail(1) if progress: progress(1.0, desc="Processing complete!") # Clean up try: pxt.drop_dir(dir_name, force=True) except Exception as e: print(f"Warning: Could not clean up directory {dir_name}: {e}") return ( results['content'][0], # Generated text content results['audio_path'][0] # Audio file path ) except Exception as e: print(f"Error processing video: {e}") return f"Error processing video: {str(e)}", None # Gradio interface def create_interface(): with gr.Blocks(theme=gr.themes.Base()) as demo: # Header gr.Markdown( """
Convert videos into rich narratives with 5 analysis styles - from Christopher Nolan-style cinematic breakdowns to David Attenborough documentary narrations.
⚠️ Notice: This application requires an OpenAI API key and uses the following services:
Open Source AI infrastructure for intelligent applications