import sys from PIL import Image import torch from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from models.blip_vqa import blip_vqa import cv2 import numpy as np import matplotlib.image as mpimg from skimage import transform as skimage_transform from scipy.ndimage import filters from matplotlib import pyplot as plt import torch from torch import nn from torchvision import transforms import json import traceback class VQA: def __init__(self, model_path, image_size=480): self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = blip_vqa(pretrained=model_path, image_size=image_size, vit='base') self.block_num = 9 self.model.eval() self.model.text_encoder.base_model.base_model.encoder.layer[self.block_num].crossattention.self.save_attention = True self.model = self.model.to(self.device) def getAttMap(self, img, attMap, blur = True, overlap = True): attMap -= attMap.min() if attMap.max() > 0: attMap /= attMap.max() attMap = skimage_transform.resize(attMap, (img.shape[:2]), order = 3, mode = 'constant') if blur: attMap = filters.gaussian_filter(attMap, 0.02*max(img.shape[:2])) attMap -= attMap.min() attMap /= attMap.max() cmap = plt.get_cmap('jet') attMapV = cmap(attMap) attMapV = np.delete(attMapV, 3, 2) if overlap: attMap = 1*(1-attMap**0.7).reshape(attMap.shape + (1,))*img + (attMap**0.7).reshape(attMap.shape+(1,)) * attMapV return attMap def gradcam(self, text_input, image_path, image): mask = text_input.attention_mask.view(text_input.attention_mask.size(0),1,-1,1,1) grads = self.model.text_encoder.base_model.base_model.encoder.layer[self.block_num].crossattention.self.get_attn_gradients() cams = self.model.text_encoder.base_model.base_model.encoder.layer[self.block_num].crossattention.self.get_attention_map() cams = cams[:, :, :, 1:].reshape(image.size(0), 12, -1, 30, 30) * mask grads = grads[:, :, :, 1:].clamp(0).reshape(image.size(0), 12, -1, 30, 30) * mask gradcam = cams * grads gradcam = gradcam[0].mean(0).cpu().detach() num_image = len(text_input.input_ids[0]) num_image -= 1 fig, ax = plt.subplots(num_image, 1, figsize=(15,15*num_image)) rgb_image = cv2.imread(image_path)[:, :, ::-1] rgb_image = np.float32(rgb_image) / 255 ax[0].imshow(rgb_image) ax[0].set_yticks([]) ax[0].set_xticks([]) ax[0].set_xlabel("Image") for i,token_id in enumerate(text_input.input_ids[0][1:-1]): word = self.model.tokenizer.decode([token_id]) gradcam_image = self.getAttMap(rgb_image, gradcam[i+1]) ax[i+1].imshow(gradcam_image) ax[i+1].set_yticks([]) ax[i+1].set_xticks([]) ax[i+1].set_xlabel(word) plt.show() def load_demo_image(self, image_size, img_path, device): raw_image = Image.open(img_path).convert('RGB') w,h = raw_image.size transform = transforms.Compose([ transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) image = transform(raw_image).unsqueeze(0).to(device) return raw_image, image def vqa(self, img_path, question): raw_image, image = self.load_demo_image(image_size=480, img_path=img_path, device=self.device) answer, vl_output, que = self.model(image, question, mode='gradcam', inference='generate') loss = vl_output[:,1].sum() self.model.zero_grad() loss.backward() with torch.no_grad(): self.gradcam(que, img_path, image) return answer[0] def vqa_demo(self, image, question): image_size = 480 transform = transforms.Compose([ transforms.ToPILImage(), transforms.Resize((image_size,image_size),interpolation=InterpolationMode.BICUBIC), transforms.ToTensor(), transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)) ]) image = transform(image).unsqueeze(0).to(self.device) answer = self.model(image, question, mode='inference', inference='generate') return answer[0] if __name__=="__main__": if not len(sys.argv) == 3: print('Format: python3 vqa.py ') print('Sample: python3 vqa.py sample.jpg "What is the color of the horse?"') else: model_path = 'checkpoints/model_base_vqa_capfilt_large.pth' vqa_object = VQA(model_path=model_path) img_path = sys.argv[1] question = sys.argv[2] answer = vqa_object.vqa(img_path, question) print('Question: {} | Answer: {}'.format(question, answer))