import gradio as gr import random import numpy as np import os import requests import torch import torchvision.transforms as T from PIL import Image from transformers import AutoProcessor, AutoModelForVision2Seq import cv2 import ast import torch from efficientnet_pytorch import EfficientNet from torchvision import transforms from PIL import Image import gradio as gr from super_gradients.training import models class Kosmos2: def __init__(self): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.colors = [ (0, 255, 0), (0, 0, 255), (255, 255, 0), (255, 0, 255), (0, 255, 255), (114, 128, 250), (0, 165, 255), (0, 128, 0), (144, 238, 144), (238, 238, 175), (255, 191, 0), (0, 128, 0), (226, 43, 138), (255, 0, 255), (0, 215, 255), (255, 0, 0), ] self.color_map = { f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for color_id, color in enumerate(self.colors) } self.ckpt = "ydshieh/kosmos-2-patch14-224" self.model = AutoModelForVision2Seq.from_pretrained(self.ckpt, trust_remote_code=True).to(self.device) self.processor = AutoProcessor.from_pretrained(self.ckpt, trust_remote_code=True) def is_overlapping(self, rect1, rect2): x1, y1, x2, y2 = rect1 x3, y3, x4, y4 = rect2 return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) def draw_entity_boxes_on_image(self, image, entities, show=False, save_path=None, entity_index=-1): """_summary_ Args: image (_type_): image or image path collect_entity_location (_type_): _description_ """ if isinstance(image, Image.Image): image_h = image.height image_w = image.width image = np.array(image)[:, :, [2, 1, 0]] elif isinstance(image, str): if os.path.exists(image): pil_img = Image.open(image).convert("RGB") image = np.array(pil_img)[:, :, [2, 1, 0]] image_h = pil_img.height image_w = pil_img.width else: raise ValueError(f"invaild image path, {image}") elif isinstance(image, torch.Tensor): # pdb.set_trace() image_tensor = image.cpu() reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean pil_img = T.ToPILImage()(image_tensor) image_h = pil_img.height image_w = pil_img.width image = np.array(pil_img)[:, :, [2, 1, 0]] else: raise ValueError(f"invaild image format, {type(image)} for {image}") if len(entities) == 0: return image indices = list(range(len(entities))) if entity_index >= 0: indices = [entity_index] # Not to show too many bboxes entities = entities[:len(self.color_map)] new_image = image.copy() previous_bboxes = [] # size of text text_size = 1 # thickness of text text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) box_line = 3 (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) base_height = int(text_height * 0.675) text_offset_original = text_height - base_height text_spaces = 3 # num_bboxes = sum(len(x[-1]) for x in entities) used_colors = self.colors # random.sample(colors, k=num_bboxes) color_id = -1 for entity_idx, (entity_name, (start, end), bboxes) in enumerate(entities): color_id += 1 if entity_idx not in indices: continue for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm) in enumerate(bboxes): # if start is None and bbox_id > 0: # color_id += 1 orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h) # draw bbox # random color color = used_colors[color_id] # tuple(np.random.randint(0, 255, size=3).tolist()) new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 x1 = orig_x1 - l_o y1 = orig_y1 - l_o if y1 < text_height + text_offset_original + 2 * text_spaces: y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces x1 = orig_x1 + r_o # add text background (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 for prev_bbox in previous_bboxes: while self.is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox): text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) y1 += (text_height + text_offset_original + 2 * text_spaces) if text_bg_y2 >= image_h: text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) text_bg_y2 = image_h y1 = image_h break alpha = 0.5 for i in range(text_bg_y1, text_bg_y2): for j in range(text_bg_x1, text_bg_x2): if i < image_h and j < image_w: if j < text_bg_x1 + 1.35 * c_width: # original color bg_color = color else: # white bg_color = [255, 255, 255] new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8) cv2.putText( new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA ) # previous_locations.append((x1, y1)) previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2)) pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]]) if save_path: pil_image.save(save_path) if show: pil_image.show() return pil_image def generate_predictions(self, image_input, text_input): # Save the image and load it again to match the original Kosmos-2 demo. # (https://github.com/microsoft/unilm/blob/f4695ed0244a275201fff00bee495f76670fbe70/kosmos-2/demo/gradio_app.py#L345-L346) user_image_path = "/tmp/user_input_test_image.jpg" image_input.save(user_image_path) # This might give different results from the original argument `image_input` image_input = Image.open(user_image_path) if text_input == "Brief": text_input = "An image of" elif text_input == "Detailed": text_input = "Describe this image in detail:" else: text_input = f"{text_input}" inputs = self.processor(text=text_input, images=image_input, return_tensors="pt") generated_ids = self.model.generate( pixel_values=inputs["pixel_values"].to(self.device), input_ids=inputs["input_ids"][:, :-1].to(self.device), attention_mask=inputs["attention_mask"][:, :-1].to(self.device), img_features=None, img_attn_mask=inputs["img_attn_mask"][:, :-1].to(self.device), use_cache=True, max_new_tokens=128, ) generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0] # By default, the generated text is cleanup and the entities are extracted. processed_text, entities = self.processor.post_process_generation(generated_text) annotated_image = self.draw_entity_boxes_on_image(image_input, entities, show=False) color_id = -1 entity_info = [] filtered_entities = [] for entity in entities: entity_name, (start, end), bboxes = entity if start == end: # skip bounding bbox without a `phrase` associated continue color_id += 1 # for bbox_id, _ in enumerate(bboxes): # if start is None and bbox_id > 0: # color_id += 1 entity_info.append(((start, end), color_id)) filtered_entities.append(entity) colored_text = [] prev_start = 0 end = 0 for idx, ((start, end), color_id) in enumerate(entity_info): if start > prev_start: colored_text.append((processed_text[prev_start:start], None)) colored_text.append((processed_text[start:end], f"{color_id}")) prev_start = end if end < len(processed_text): colored_text.append((processed_text[end:len(processed_text)], None)) return annotated_image, colored_text, str(filtered_entities) class VehiclePredictor: def __init__(self, model_path): self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu") self.yolo_nas_l = models.get("yolo_nas_l", pretrained_weights="coco") self.classifier_model = torch.load(model_path) self.classifier_model = self.classifier_model.to(self.device) self.classifier_model.eval() # Set the model to evaluation mode def bounding_boxes_overlap(self, box1, box2): """Check if two bounding boxes overlap or touch.""" x1, y1, x2, y2 = box1 x3, y3, x4, y4 = box2 return not (x3 > x2 or x4 < x1 or y3 > y2 or y4 < y1) def merge_boxes(self, box1, box2): """Return the encompassing bounding box of two boxes.""" x1, y1, x2, y2 = box1 x3, y3, x4, y4 = box2 x = min(x1, x3) y = min(y1, y3) w = max(x2, x4) h = max(y2, y4) return (x, y, w, h) def save_merged_boxes(self, predictions, image_np): """Save merged bounding boxes as separate images.""" processed_boxes = set() roi = None # Initialize roi to None for image_prediction in predictions: bboxes = image_prediction.prediction.bboxes_xyxy for box1 in bboxes: for box2 in bboxes: if np.array_equal(box1, box2): continue if self.bounding_boxes_overlap(box1, box2) and tuple(box1) not in processed_boxes and tuple(box2) not in processed_boxes: merged_box = self.merge_boxes(box1, box2) roi = image_np[int(merged_box[1]):int(merged_box[3]), int(merged_box[0]):int(merged_box[2])] processed_boxes.add(tuple(box1)) processed_boxes.add(tuple(box2)) break # Exit the inner loop once a match is found if roi is not None: break # Exit the outer loop once a match is found return roi # Perform inference on an image def predict_image(self, image, model): # First, get the ROI using YOLO-NAS image_np = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR) predictions = self.yolo_nas_l.predict(image_np, iou=0.3, conf=0.35) roi_new = self.save_merged_boxes(predictions, image_np) if roi_new is None: roi_new = image_np # Use the original image if no ROI is found # Convert ROI back to PIL Image for EfficientNet roi_image = Image.fromarray(cv2.cvtColor(roi_new, cv2.COLOR_BGR2RGB)) # Define the image transformations transform = transforms.Compose([ transforms.Resize(256), transforms.CenterCrop(224), transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) # Convert PIL Image to Tensor roi_image_tensor = transform(roi_image).unsqueeze(0).to(self.device) with torch.no_grad(): outputs = self.classifier_model(roi_image_tensor) _, predicted = outputs.max(1) prediction_text = 'Accident' if predicted.item() == 0 else 'No accident' return roi_image, prediction_text # Return both the roi_image and the prediction text def main(): kosmos2 = Kosmos2() vehicle_predictor = VehiclePredictor('vehicle.pt') with gr.Blocks(title="Advanced Vehicle Contextualization & Collision Prediction", theme=gr.themes.Base()).queue() as demo: gr.Markdown((""" # Models used - Kosmos-2: Grounding Multimodal Large Language Models to the World [[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2) YOLO-NAS [[Code]](https://github.com/Deci-AI/super-gradients/blob/master/YOLONAS.md) EfficientNet-b0 """)) with gr.Row(): with gr.Column(): image_input = gr.Image(type="pil", label="Test Image") text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief") run_button = gr.Button(label="Run", visible=True) with gr.Column(): image_output_kosmos = gr.Image(type="pil", label="Kosmos-2 Output Image") text_output_kosmos = gr.HighlightedText( label="Generated Description by Kosmos-2", combine_adjacent=False, show_legend=True, ).style(color_map=kosmos2.color_map) image_output_vehicle = gr.Image(type="pil", label="Collision Predictor Output Image", size=(112, 112)) text_output_vehicle = gr.Textbox(label="Collision Predictor Result") # record which text span (label) is selected selected = gr.Number(-1, show_label=False, placeholder="Selected", visible=False) # record the current `entities` entity_output = gr.Textbox(visible=False) # get the current selected span label def get_text_span_label(evt: gr.SelectData): if evt.value[-1] is None: return -1 return int(evt.value[-1]) # and set this information to `selected` text_output_kosmos.select(get_text_span_label, None, selected) # update output image when we change the span (enity) selection def update_output_image(img_input, image_output, entities, idx): entities = ast.literal_eval(entities) updated_image = kosmos2.draw_entity_boxes_on_image(img_input, entities, entity_index=idx) return updated_image selected.change(update_output_image, [image_input, image_output_kosmos, entity_output, selected], [image_output_kosmos]) def combined_predictions(img, description_type): # Kosmos2 predictions kosmos_image, kosmos_text, entities = kosmos2.generate_predictions(img, description_type) # VehiclePredictor predictions vehicle_image, vehicle_text = vehicle_predictor.predict_image(img, vehicle_predictor.classifier_model) return kosmos_image, kosmos_text, entities, vehicle_image, vehicle_text run_button.click(fn=combined_predictions, inputs=[image_input, text_input], outputs=[image_output_kosmos, text_output_kosmos, entity_output, image_output_vehicle, text_output_vehicle], show_progress=True, queue=True) demo.launch(share=True) if __name__ == "__main__": main()