import gradio as gr from gradio.inputs import Textbox import torch from diffusers import StableDiffusionPipeline import boto3 from io import BytesIO import os AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID") AWS_SECRET_ACCESS_KEY = os.getenv("AWS_SECRET_ACCESS_KEY") S3_BUCKET_NAME = os.getenv("BUCKET_NAME") model_id = "CompVis/stable-diffusion-v1-4" device = "cuda" if torch.cuda.is_available() else "cpu" pipe = StableDiffusionPipeline.from_pretrained( model_id, torch_dtype=torch.float32) pipe = pipe.to(device) def text_to_image(prompt, save_as, key_id): if AWS_ACCESS_KEY_ID != key_id: return "not permition" # Create an instance of the S3 client s3 = boto3.client('s3', aws_access_key_id=AWS_ACCESS_KEY_ID, aws_secret_access_key=AWS_SECRET_ACCESS_KEY) image_name = '-'.join(save_as.split()) + ".webp" def save_image_to_s3(image): # Create a BytesIO object to store the image. image_buffer = BytesIO() image.save(image_buffer, format='WEBP') image_buffer.seek(0) # Full path of the file in the bucket s3_key = "public/" + image_name # Upload the image to the S3 bucket s3.upload_fileobj(image_buffer, S3_BUCKET_NAME, s3_key) def generator_image(prompt): prompt = prompt image = pipe(prompt).images[0] # Save the image in S3 save_image_to_s3(image) generator_image(prompt) return image_name iface = gr.Interface(fn=text_to_image, inputs=[Textbox(label="prompt"), Textbox(label="s3_save_as"), Textbox(label="aws_key_id")], outputs="text") iface.launch()