import gradio as gr from huggingface_hub import InferenceClient from model import load_model, load_tokenizer from utils import clean_output, get_shap_values import torch import shap import matplotlib.pyplot as plt """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") model = load_model() tokenizer = load_tokenizer() def gradio_generate(context, num_questions, max_length): input_prompt = f"generate question: {context.strip()}" inputs = tokenizer(input_prompt, return_tensors="pt", truncation=True, padding="longest").to(model.device) outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_length=max_length, num_return_sequences=num_questions, do_sample=True, top_p=0.95, temperature=1.0 ) decoded = tokenizer.batch_decode(outputs, skip_special_tokens=True) questions = clean_output(decoded) return "\n".join([f"{i+1}. {q}" for i, q in enumerate(questions)]) def gradio_shap(context): input_prompt = f"generate question: {context.strip()}" try: shap_values, tokens = get_shap_values(tokenizer, model, input_prompt) fig, ax = plt.subplots(figsize=(10, 2)) shap.plots.text(shap.Explanation(values=shap_values, data=tokens), display=False) plt.tight_layout() return fig except Exception as e: fig, ax = plt.subplots(figsize=(8, 2)) ax.text(0.5, 0.5, f"SHAP explanation failed:\n{e}", ha='center', va='center', wrap=True, fontsize=12) ax.axis('off') return fig with gr.Blocks() as demo: gr.Markdown("# 🧠 C3QG – Context-Controlled Question Generation with FLAN-T5") context = gr.Textbox(label="📄 Paste your context paragraph here:", lines=6) num_questions = gr.Slider(1, 5, value=3, label="Number of Questions") max_length = gr.Slider(32, 128, value=64, label="Max Output Tokens") generate_btn = gr.Button("🔄 Generate Questions") questions_output = gr.Textbox(label="🎯 Generated Questions") shap_btn = gr.Button("Show SHAP Explanation") shap_output = gr.Plot(label="SHAP Token Importance") generate_btn.click( gradio_generate, inputs=[context, num_questions, max_length], outputs=questions_output ) if __name__ == "__main__": demo.launch()