import gradio as gr from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM, AutoTokenizer import torch # Load the model and config when the script starts config = PeftConfig.from_pretrained("PhantHive/bigbrain") model = AutoModelForCausalLM.from_pretrained("NousResearch/Llama-2-7b-chat-hf") model = PeftModel.from_pretrained(model, "PhantHive/bigbrain") # Load the tokenizer tokenizer = AutoTokenizer.from_pretrained("NousResearch/Llama-2-7b-chat-hf", add_eos_token=True) def greet(text): batch = tokenizer(f"'{text}' ->: ", return_tensors='pt') # Use torch.no_grad to disable gradient calculation with torch.no_grad(): output_tokens = model.generate(**batch, do_sample=True, max_new_tokens=50, temperature=0.9, num_beams=5) return tokenizer.decode(output_tokens[0], skip_special_tokens=True) iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch()