from typing import Dict, Tuple import librosa import numpy as np import scipy.io.wavfile import scipy.signal import soundfile as sf import torch from torch import nn # from TTS.tts.utils.helpers import StandardScaler class StandardScaler: """StandardScaler for mean-scale normalization with the given mean and scale values.""" def __init__(self, mean: np.ndarray = None, scale: np.ndarray = None) -> None: self.mean_ = mean self.scale_ = scale def set_stats(self, mean, scale): self.mean_ = mean self.scale_ = scale def reset_stats(self): delattr(self, "mean_") delattr(self, "scale_") def transform(self, X): X = np.asarray(X) X -= self.mean_ X /= self.scale_ return X def inverse_transform(self, X): X = np.asarray(X) X *= self.scale_ X += self.mean_ return X class TorchSTFT(nn.Module): # pylint: disable=abstract-method """Some of the audio processing funtions using Torch for faster batch processing. TODO: Merge this with audio.py Args: n_fft (int): FFT window size for STFT. hop_length (int): number of frames between STFT columns. win_length (int, optional): STFT window length. pad_wav (bool, optional): If True pad the audio with (n_fft - hop_length) / 2). Defaults to False. window (str, optional): The name of a function to create a window tensor that is applied/multiplied to each frame/window. Defaults to "hann_window" sample_rate (int, optional): target audio sampling rate. Defaults to None. mel_fmin (int, optional): minimum filter frequency for computing melspectrograms. Defaults to None. mel_fmax (int, optional): maximum filter frequency for computing melspectrograms. Defaults to None. n_mels (int, optional): number of melspectrogram dimensions. Defaults to None. use_mel (bool, optional): If True compute the melspectrograms otherwise. Defaults to False. do_amp_to_db_linear (bool, optional): enable/disable amplitude to dB conversion of linear spectrograms. Defaults to False. spec_gain (float, optional): gain applied when converting amplitude to DB. Defaults to 1.0. power (float, optional): Exponent for the magnitude spectrogram, e.g., 1 for energy, 2 for power, etc. Defaults to None. use_htk (bool, optional): Use HTK formula in mel filter instead of Slaney. mel_norm (None, 'slaney', or number, optional): If 'slaney', divide the triangular mel weights by the width of the mel band (area normalization). If numeric, use `librosa.util.normalize` to normalize each filter by to unit l_p norm. See `librosa.util.normalize` for a full description of supported norm values (including `+-np.inf`). Otherwise, leave all the triangles aiming for a peak value of 1.0. Defaults to "slaney". """ def __init__( self, n_fft, hop_length, win_length, pad_wav=False, window="hann_window", sample_rate=None, mel_fmin=0, mel_fmax=None, n_mels=80, use_mel=False, do_amp_to_db=False, spec_gain=1.0, power=None, use_htk=False, mel_norm="slaney", ): super().__init__() self.n_fft = n_fft self.hop_length = hop_length self.win_length = win_length self.pad_wav = pad_wav self.sample_rate = sample_rate self.mel_fmin = mel_fmin self.mel_fmax = mel_fmax self.n_mels = n_mels self.use_mel = use_mel self.do_amp_to_db = do_amp_to_db self.spec_gain = spec_gain self.power = power self.use_htk = use_htk self.mel_norm = mel_norm self.window = nn.Parameter(getattr(torch, window)(win_length), requires_grad=False) self.mel_basis = None if use_mel: self._build_mel_basis() def __call__(self, x): """Compute spectrogram frames by torch based stft. Args: x (Tensor): input waveform Returns: Tensor: spectrogram frames. Shapes: x: [B x T] or [:math:`[B, 1, T]`] """ if x.ndim == 2: x = x.unsqueeze(1) if self.pad_wav: padding = int((self.n_fft - self.hop_length) / 2) x = torch.nn.functional.pad(x, (padding, padding), mode="reflect") # B x D x T x 2 x_device = x.device o = torch.stft( x.squeeze(1).to(self.window.device), self.n_fft, self.hop_length, self.win_length, self.window, center=True, pad_mode="reflect", # compatible with audio.py normalized=False, onesided=True, return_complex=False, ) M = o[:, :, :, 0] P = o[:, :, :, 1] S = torch.sqrt(torch.clamp(M ** 2 + P ** 2, min=1e-8)) if self.power is not None: S = S ** self.power if self.use_mel: S = torch.matmul(self.mel_basis.to(self.window.device), S) # S = torch.matmul(self.mel_basis, S) if self.do_amp_to_db: S = self._amp_to_db(S, spec_gain=self.spec_gain) return S.to(x_device) def _build_mel_basis(self): mel_basis = librosa.filters.mel( self.sample_rate, self.n_fft, n_mels=self.n_mels, fmin=self.mel_fmin, fmax=self.mel_fmax, htk=self.use_htk, norm=self.mel_norm, ) self.mel_basis = torch.from_numpy(mel_basis).float() @staticmethod def _amp_to_db(x, spec_gain=1.0): return torch.log(torch.clamp(x, min=1e-5) * spec_gain) @staticmethod def _db_to_amp(x, spec_gain=1.0): return torch.exp(x) / spec_gain # pylint: disable=too-many-public-methods class AudioProcessor(object): """Audio Processor for TTS used by all the data pipelines. TODO: Make this a dataclass to replace `BaseAudioConfig`. Note: All the class arguments are set to default values to enable a flexible initialization of the class with the model config. They are not meaningful for all the arguments. Args: sample_rate (int, optional): target audio sampling rate. Defaults to None. resample (bool, optional): enable/disable resampling of the audio clips when the target sampling rate does not match the original sampling rate. Defaults to False. num_mels (int, optional): number of melspectrogram dimensions. Defaults to None. log_func (int, optional): log exponent used for converting spectrogram aplitude to DB. min_level_db (int, optional): minimum db threshold for the computed melspectrograms. Defaults to None. frame_shift_ms (int, optional): milliseconds of frames between STFT columns. Defaults to None. frame_length_ms (int, optional): milliseconds of STFT window length. Defaults to None. hop_length (int, optional): number of frames between STFT columns. Used if ```frame_shift_ms``` is None. Defaults to None. win_length (int, optional): STFT window length. Used if ```frame_length_ms``` is None. Defaults to None. ref_level_db (int, optional): reference DB level to avoid background noise. In general <20DB corresponds to the air noise. Defaults to None. fft_size (int, optional): FFT window size for STFT. Defaults to 1024. power (int, optional): Exponent value applied to the spectrogram before GriffinLim. Defaults to None. preemphasis (float, optional): Preemphasis coefficient. Preemphasis is disabled if == 0.0. Defaults to 0.0. signal_norm (bool, optional): enable/disable signal normalization. Defaults to None. symmetric_norm (bool, optional): enable/disable symmetric normalization. If set True normalization is performed in the range [-k, k] else [0, k], Defaults to None. max_norm (float, optional): ```k``` defining the normalization range. Defaults to None. mel_fmin (int, optional): minimum filter frequency for computing melspectrograms. Defaults to None. mel_fmax (int, optional): maximum filter frequency for computing melspectrograms. Defaults to None. spec_gain (int, optional): gain applied when converting amplitude to DB. Defaults to 20. stft_pad_mode (str, optional): Padding mode for STFT. Defaults to 'reflect'. clip_norm (bool, optional): enable/disable clipping the our of range values in the normalized audio signal. Defaults to True. griffin_lim_iters (int, optional): Number of GriffinLim iterations. Defaults to None. do_trim_silence (bool, optional): enable/disable silence trimming when loading the audio signal. Defaults to False. trim_db (int, optional): DB threshold used for silence trimming. Defaults to 60. do_sound_norm (bool, optional): enable/disable signal normalization. Defaults to False. do_amp_to_db_linear (bool, optional): enable/disable amplitude to dB conversion of linear spectrograms. Defaults to True. do_amp_to_db_mel (bool, optional): enable/disable amplitude to dB conversion of mel spectrograms. Defaults to True. do_rms_norm (bool, optional): enable/disable RMS volume normalization when loading an audio file. Defaults to False. db_level (int, optional): dB level used for rms normalization. The range is -99 to 0. Defaults to None. stats_path (str, optional): Path to the computed stats file. Defaults to None. verbose (bool, optional): enable/disable logging. Defaults to True. """ def __init__( self, # sample_rate=None, sample_rate=22050, resample=False, num_mels=None, log_func="np.log10", min_level_db=None, frame_shift_ms=None, frame_length_ms=None, # hop_length=None, hop_length=256, # win_length=None, win_length=1024, ref_level_db=None, fft_size=1024, power=None, preemphasis=0.0, signal_norm=None, symmetric_norm=None, max_norm=None, mel_fmin=None, mel_fmax=None, spec_gain=20, stft_pad_mode="reflect", clip_norm=True, griffin_lim_iters=None, do_trim_silence=False, trim_db=60, do_sound_norm=False, do_amp_to_db_linear=True, do_amp_to_db_mel=True, do_rms_norm=False, db_level=None, stats_path=None, verbose=True, **_, ): # setup class attributed self.sample_rate = sample_rate self.resample = resample self.num_mels = num_mels self.log_func = log_func self.min_level_db = min_level_db or 0 self.frame_shift_ms = frame_shift_ms self.frame_length_ms = frame_length_ms self.ref_level_db = ref_level_db self.fft_size = fft_size self.power = power self.preemphasis = preemphasis self.griffin_lim_iters = griffin_lim_iters self.signal_norm = signal_norm self.symmetric_norm = symmetric_norm self.mel_fmin = mel_fmin or 0 self.mel_fmax = mel_fmax self.spec_gain = float(spec_gain) self.stft_pad_mode = stft_pad_mode self.max_norm = 1.0 if max_norm is None else float(max_norm) self.clip_norm = clip_norm self.do_trim_silence = do_trim_silence self.trim_db = trim_db self.do_sound_norm = do_sound_norm self.do_amp_to_db_linear = do_amp_to_db_linear self.do_amp_to_db_mel = do_amp_to_db_mel self.do_rms_norm = do_rms_norm self.db_level = db_level self.stats_path = stats_path # setup exp_func for db to amp conversion if log_func == "np.log": self.base = np.e elif log_func == "np.log10": self.base = 10 else: raise ValueError(" [!] unknown `log_func` value.") # setup stft parameters if hop_length is None: # compute stft parameters from given time values self.hop_length, self.win_length = self._stft_parameters() else: # use stft parameters from config file self.hop_length = hop_length self.win_length = win_length assert min_level_db != 0.0, " [!] min_level_db is 0" assert self.win_length <= self.fft_size, " [!] win_length cannot be larger than fft_size" # members = vars(self) # if verbose: # print(" > Setting up Audio Processor...") # for key, value in members.items(): # print(" | > {}:{}".format(key, value)) # create spectrogram utils self.mel_basis = self._build_mel_basis() self.inv_mel_basis = np.linalg.pinv(self._build_mel_basis()) # setup scaler if stats_path and signal_norm: mel_mean, mel_std, linear_mean, linear_std, _ = self.load_stats(stats_path) self.setup_scaler(mel_mean, mel_std, linear_mean, linear_std) self.signal_norm = True self.max_norm = None self.clip_norm = None self.symmetric_norm = None ### setting up the parameters ### def _build_mel_basis( self, ) -> np.ndarray: """Build melspectrogram basis. Returns: np.ndarray: melspectrogram basis. """ if self.mel_fmax is not None: assert self.mel_fmax <= self.sample_rate // 2 return librosa.filters.mel( self.sample_rate, self.fft_size, n_mels=self.num_mels, fmin=self.mel_fmin, fmax=self.mel_fmax ) def _stft_parameters( self, ) -> Tuple[int, int]: """Compute the real STFT parameters from the time values. Returns: Tuple[int, int]: hop length and window length for STFT. """ factor = self.frame_length_ms / self.frame_shift_ms assert (factor).is_integer(), " [!] frame_shift_ms should divide frame_length_ms" hop_length = int(self.frame_shift_ms / 1000.0 * self.sample_rate) win_length = int(hop_length * factor) return hop_length, win_length ### normalization ### def normalize(self, S: np.ndarray) -> np.ndarray: """Normalize values into `[0, self.max_norm]` or `[-self.max_norm, self.max_norm]` Args: S (np.ndarray): Spectrogram to normalize. Raises: RuntimeError: Mean and variance is computed from incompatible parameters. Returns: np.ndarray: Normalized spectrogram. """ # pylint: disable=no-else-return return S # S = S.copy() # if self.signal_norm: # # mean-var scaling # if hasattr(self, "mel_scaler"): # if S.shape[0] == self.num_mels: # return self.mel_scaler.transform(S.T).T # elif S.shape[0] == self.fft_size / 2: # return self.linear_scaler.transform(S.T).T # else: # raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.") # # range normalization # S -= self.ref_level_db # discard certain range of DB assuming it is air noise # S_norm = (S - self.min_level_db) / (-self.min_level_db) # if self.symmetric_norm: # S_norm = ((2 * self.max_norm) * S_norm) - self.max_norm # if self.clip_norm: # S_norm = np.clip( # S_norm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type # ) # return S_norm # else: # S_norm = self.max_norm * S_norm # if self.clip_norm: # S_norm = np.clip(S_norm, 0, self.max_norm) # return S_norm # else: # return S def denormalize(self, S: np.ndarray) -> np.ndarray: """Denormalize spectrogram values. Args: S (np.ndarray): Spectrogram to denormalize. Raises: RuntimeError: Mean and variance are incompatible. Returns: np.ndarray: Denormalized spectrogram. """ # pylint: disable=no-else-return S_denorm = S.copy() if self.signal_norm: # mean-var scaling if hasattr(self, "mel_scaler"): if S_denorm.shape[0] == self.num_mels: return self.mel_scaler.inverse_transform(S_denorm.T).T elif S_denorm.shape[0] == self.fft_size / 2: return self.linear_scaler.inverse_transform(S_denorm.T).T else: raise RuntimeError(" [!] Mean-Var stats does not match the given feature dimensions.") if self.symmetric_norm: if self.clip_norm: S_denorm = np.clip( S_denorm, -self.max_norm, self.max_norm # pylint: disable=invalid-unary-operand-type ) S_denorm = ((S_denorm + self.max_norm) * -self.min_level_db / (2 * self.max_norm)) + self.min_level_db return S_denorm + self.ref_level_db else: if self.clip_norm: S_denorm = np.clip(S_denorm, 0, self.max_norm) S_denorm = (S_denorm * -self.min_level_db / self.max_norm) + self.min_level_db return S_denorm + self.ref_level_db else: return S_denorm ### Mean-STD scaling ### def load_stats(self, stats_path: str) -> Tuple[np.array, np.array, np.array, np.array, Dict]: """Loading mean and variance statistics from a `npy` file. Args: stats_path (str): Path to the `npy` file containing Returns: Tuple[np.array, np.array, np.array, np.array, Dict]: loaded statistics and the config used to compute them. """ stats = np.load(stats_path, allow_pickle=True).item() # pylint: disable=unexpected-keyword-arg mel_mean = stats["mel_mean"] mel_std = stats["mel_std"] linear_mean = stats["linear_mean"] linear_std = stats["linear_std"] stats_config = stats["audio_config"] # check all audio parameters used for computing stats skip_parameters = ["griffin_lim_iters", "stats_path", "do_trim_silence", "ref_level_db", "power"] for key in stats_config.keys(): if key in skip_parameters: continue if key not in ["sample_rate", "trim_db"]: assert ( stats_config[key] == self.__dict__[key] ), f" [!] Audio param {key} does not match the value used for computing mean-var stats. {stats_config[key]} vs {self.__dict__[key]}" return mel_mean, mel_std, linear_mean, linear_std, stats_config # pylint: disable=attribute-defined-outside-init def setup_scaler( self, mel_mean: np.ndarray, mel_std: np.ndarray, linear_mean: np.ndarray, linear_std: np.ndarray ) -> None: """Initialize scaler objects used in mean-std normalization. Args: mel_mean (np.ndarray): Mean for melspectrograms. mel_std (np.ndarray): STD for melspectrograms. linear_mean (np.ndarray): Mean for full scale spectrograms. linear_std (np.ndarray): STD for full scale spectrograms. """ self.mel_scaler = StandardScaler() self.mel_scaler.set_stats(mel_mean, mel_std) self.linear_scaler = StandardScaler() self.linear_scaler.set_stats(linear_mean, linear_std) ### DB and AMP conversion ### # pylint: disable=no-self-use def _amp_to_db(self, x: np.ndarray) -> np.ndarray: """Convert amplitude values to decibels. Args: x (np.ndarray): Amplitude spectrogram. Returns: np.ndarray: Decibels spectrogram. """ return self.spec_gain * _log(np.maximum(1e-5, x), self.base) # pylint: disable=no-self-use def _db_to_amp(self, x: np.ndarray) -> np.ndarray: """Convert decibels spectrogram to amplitude spectrogram. Args: x (np.ndarray): Decibels spectrogram. Returns: np.ndarray: Amplitude spectrogram. """ return _exp(x / self.spec_gain, self.base) ### Preemphasis ### def apply_preemphasis(self, x: np.ndarray) -> np.ndarray: """Apply pre-emphasis to the audio signal. Useful to reduce the correlation between neighbouring signal values. Args: x (np.ndarray): Audio signal. Raises: RuntimeError: Preemphasis coeff is set to 0. Returns: np.ndarray: Decorrelated audio signal. """ if self.preemphasis == 0: raise RuntimeError(" [!] Preemphasis is set 0.0.") return scipy.signal.lfilter([1, -self.preemphasis], [1], x) def apply_inv_preemphasis(self, x: np.ndarray) -> np.ndarray: """Reverse pre-emphasis.""" if self.preemphasis == 0: raise RuntimeError(" [!] Preemphasis is set 0.0.") return scipy.signal.lfilter([1], [1, -self.preemphasis], x) ### SPECTROGRAMs ### def _linear_to_mel(self, spectrogram: np.ndarray) -> np.ndarray: """Project a full scale spectrogram to a melspectrogram. Args: spectrogram (np.ndarray): Full scale spectrogram. Returns: np.ndarray: Melspectrogram """ return np.dot(self.mel_basis, spectrogram) def _mel_to_linear(self, mel_spec: np.ndarray) -> np.ndarray: """Convert a melspectrogram to full scale spectrogram.""" return np.maximum(1e-10, np.dot(self.inv_mel_basis, mel_spec)) def spectrogram(self, y: np.ndarray) -> np.ndarray: """Compute a spectrogram from a waveform. Args: y (np.ndarray): Waveform. Returns: np.ndarray: Spectrogram. """ # if self.preemphasis != 0: # D = self._stft(self.apply_preemphasis(y)) # else: # D = self._stft(y) D = self._stft(y) # if self.do_amp_to_db_linear: # S = self._amp_to_db(np.abs(D)) # else: # S = np.abs(D) S = np.abs(D) return self.normalize(S).astype(np.float32) def melspectrogram(self, y: np.ndarray) -> np.ndarray: """Compute a melspectrogram from a waveform.""" # if self.preemphasis != 0: # D = self._stft(self.apply_preemphasis(y)) # else: # D = self._stft(y) D = self._stft(y) # if self.do_amp_to_db_mel: # S = self._amp_to_db(self._linear_to_mel(np.abs(D))) # else: # S = self._linear_to_mel(np.abs(D)) S = self._amp_to_db(self._linear_to_mel(np.abs(D))) return self.normalize(S).astype(np.float32) def inv_spectrogram(self, spectrogram: np.ndarray) -> np.ndarray: """Convert a spectrogram to a waveform using Griffi-Lim vocoder.""" S = self.denormalize(spectrogram) S = self._db_to_amp(S) # Reconstruct phase if self.preemphasis != 0: return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power)) return self._griffin_lim(S ** self.power) def inv_melspectrogram(self, mel_spectrogram: np.ndarray) -> np.ndarray: """Convert a melspectrogram to a waveform using Griffi-Lim vocoder.""" D = self.denormalize(mel_spectrogram) S = self._db_to_amp(D) S = self._mel_to_linear(S) # Convert back to linear if self.preemphasis != 0: return self.apply_inv_preemphasis(self._griffin_lim(S ** self.power)) return self._griffin_lim(S ** self.power) def out_linear_to_mel(self, linear_spec: np.ndarray) -> np.ndarray: """Convert a full scale linear spectrogram output of a network to a melspectrogram. Args: linear_spec (np.ndarray): Normalized full scale linear spectrogram. Returns: np.ndarray: Normalized melspectrogram. """ S = self.denormalize(linear_spec) S = self._db_to_amp(S) S = self._linear_to_mel(np.abs(S)) S = self._amp_to_db(S) mel = self.normalize(S) return mel ### STFT and ISTFT ### def _stft(self, y: np.ndarray) -> np.ndarray: """Librosa STFT wrapper. Args: y (np.ndarray): Audio signal. Returns: np.ndarray: Complex number array. """ return librosa.stft( y=y, n_fft=self.fft_size, hop_length=self.hop_length, win_length=self.win_length, pad_mode=self.stft_pad_mode, window="hann", center=True, ) def _istft(self, y: np.ndarray) -> np.ndarray: """Librosa iSTFT wrapper.""" return librosa.istft(y, hop_length=self.hop_length, win_length=self.win_length) def _griffin_lim(self, S): angles = np.exp(2j * np.pi * np.random.rand(*S.shape)) S_complex = np.abs(S).astype(np.complex) y = self._istft(S_complex * angles) if not np.isfinite(y).all(): print(" [!] Waveform is not finite everywhere. Skipping the GL.") return np.array([0.0]) for _ in range(self.griffin_lim_iters): angles = np.exp(1j * np.angle(self._stft(y))) y = self._istft(S_complex * angles) return y def compute_stft_paddings(self, x, pad_sides=1): """Compute paddings used by Librosa's STFT. Compute right padding (final frame) or both sides padding (first and final frames)""" assert pad_sides in (1, 2) pad = (x.shape[0] // self.hop_length + 1) * self.hop_length - x.shape[0] if pad_sides == 1: return 0, pad return pad // 2, pad // 2 + pad % 2 def compute_f0(self, x: np.ndarray) -> np.ndarray: import pyworld as pw """Compute pitch (f0) of a waveform using the same parameters used for computing melspectrogram. Args: x (np.ndarray): Waveform. Returns: np.ndarray: Pitch. Examples: >>> WAV_FILE = filename = librosa.util.example_audio_file() >>> from TTS.config import BaseAudioConfig >>> from TTS.utils.audio import AudioProcessor >>> conf = BaseAudioConfig(mel_fmax=8000) >>> ap = AudioProcessor(**conf) >>> wav = ap.load_wav(WAV_FILE, sr=22050)[:5 * 22050] >>> pitch = ap.compute_f0(wav) """ # align F0 length to the spectrogram length # if len(x) % self.hop_length == 0: # x = np.pad(x, (0, self.hop_length // 2), mode="reflect") # f0, t = pw.dio( # x.astype(np.double), # fs=self.sample_rate, # f0_ceil=self.mel_fmax, # frame_period=1000 * self.hop_length / self.sample_rate, # ) # f0 = pw.stonemask(x.astype(np.double), f0, t, self.sample_rate) # return f0 pass ### Audio Processing ### def find_endpoint(self, wav: np.ndarray, min_silence_sec=0.8) -> int: """Find the last point without silence at the end of a audio signal. Args: wav (np.ndarray): Audio signal. threshold_db (int, optional): Silence threshold in decibels. Defaults to -40. min_silence_sec (float, optional): Ignore silences that are shorter then this in secs. Defaults to 0.8. Returns: int: Last point without silence. """ window_length = int(self.sample_rate * min_silence_sec) hop_length = int(window_length / 4) threshold = self._db_to_amp(-self.trim_db) for x in range(hop_length, len(wav) - window_length, hop_length): if np.max(wav[x : x + window_length]) < threshold: return x + hop_length return len(wav) def trim_silence(self, wav): """Trim silent parts with a threshold and 0.01 sec margin""" margin = int(self.sample_rate * 0.01) wav = wav[margin:-margin] return librosa.effects.trim(wav, top_db=self.trim_db, frame_length=self.win_length, hop_length=self.hop_length)[ 0 ] @staticmethod def sound_norm(x: np.ndarray) -> np.ndarray: """Normalize the volume of an audio signal. Args: x (np.ndarray): Raw waveform. Returns: np.ndarray: Volume normalized waveform. """ return x / abs(x).max() * 0.95 @staticmethod def _rms_norm(wav, db_level=-27): r = 10 ** (db_level / 20) a = np.sqrt((len(wav) * (r ** 2)) / np.sum(wav ** 2)) return wav * a def rms_volume_norm(self, x: np.ndarray, db_level: float = None) -> np.ndarray: """Normalize the volume based on RMS of the signal. Args: x (np.ndarray): Raw waveform. Returns: np.ndarray: RMS normalized waveform. """ if db_level is None: db_level = self.db_level assert -99 <= db_level <= 0, " [!] db_level should be between -99 and 0" wav = self._rms_norm(x, db_level) return wav ### save and load ### def load_wav(self, filename: str, sr: int = None) -> np.ndarray: """Read a wav file using Librosa and optionally resample, silence trim, volume normalize. Resampling slows down loading the file significantly. Therefore it is recommended to resample the file before. Args: filename (str): Path to the wav file. sr (int, optional): Sampling rate for resampling. Defaults to None. Returns: np.ndarray: Loaded waveform. """ if self.resample: # loading with resampling. It is significantly slower. x, sr = librosa.load(filename, sr=self.sample_rate) elif sr is None: # SF is faster than librosa for loading files x, sr = sf.read(filename) assert self.sample_rate == sr, "%s vs %s (%s)" % (self.sample_rate, sr, filename) else: x, sr = librosa.load(filename, sr=sr) if self.do_trim_silence: try: x = self.trim_silence(x) except ValueError as e: print(f" [!] File cannot be trimmed for silence - {filename}:", e) return None#"==DEL_BAD_FILE==" if self.do_sound_norm: x = self.sound_norm(x) if self.do_rms_norm: x = self.rms_volume_norm(x, self.db_level) return x def save_wav(self, wav: np.ndarray, path: str, sr: int = None) -> None: """Save a waveform to a file using Scipy. Args: wav (np.ndarray): Waveform to save. path (str): Path to a output file. sr (int, optional): Sampling rate used for saving to the file. Defaults to None. """ wav_norm = wav * (32767 / max(0.01, np.max(np.abs(wav)))) scipy.io.wavfile.write(path, sr if sr else self.sample_rate, wav_norm.astype(np.int16)) def get_duration(self, filename: str) -> float: """Get the duration of a wav file using Librosa. Args: filename (str): Path to the wav file. """ return librosa.get_duration(filename) @staticmethod def mulaw_encode(wav: np.ndarray, qc: int) -> np.ndarray: mu = 2 ** qc - 1 # wav_abs = np.minimum(np.abs(wav), 1.0) signal = np.sign(wav) * np.log(1 + mu * np.abs(wav)) / np.log(1.0 + mu) # Quantize signal to the specified number of levels. signal = (signal + 1) / 2 * mu + 0.5 return np.floor( signal, ) @staticmethod def mulaw_decode(wav, qc): """Recovers waveform from quantized values.""" mu = 2 ** qc - 1 x = np.sign(wav) / mu * ((1 + mu) ** np.abs(wav) - 1) return x @staticmethod def encode_16bits(x): return np.clip(x * 2 ** 15, -(2 ** 15), 2 ** 15 - 1).astype(np.int16) @staticmethod def quantize(x: np.ndarray, bits: int) -> np.ndarray: """Quantize a waveform to a given number of bits. Args: x (np.ndarray): Waveform to quantize. Must be normalized into the range `[-1, 1]`. bits (int): Number of quantization bits. Returns: np.ndarray: Quantized waveform. """ return (x + 1.0) * (2 ** bits - 1) / 2 @staticmethod def dequantize(x, bits): """Dequantize a waveform from the given number of bits.""" return 2 * x / (2 ** bits - 1) - 1 def _log(x, base): if base == 10: return np.log10(x) return np.log(x) def _exp(x, base): if base == 10: return np.power(10, x) return np.exp(x)