from cached_path import cached_path # print("GRUUT") # from gruut_phonemize import gphonemize # from dp.phonemizer import Phonemizer print("NLTK") import nltk nltk.download('punkt') nltk.download('punkt_tab') print("SCIPY") from scipy.io.wavfile import write print("TORCH STUFF") import torch print("START") torch.manual_seed(0) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True import random random.seed(0) import numpy as np np.random.seed(0) # load packages import time import random import yaml from munch import Munch import numpy as np import torch from torch import nn import torch.nn.functional as F import torchaudio import librosa from nltk.tokenize import word_tokenize from models import * from utils import * from text_utils import TextCleaner import re textclenaer = TextCleaner() to_mel = torchaudio.transforms.MelSpectrogram( n_mels=80, n_fft=2048, win_length=1200, hop_length=300) mean, std = -4, 4 def length_to_mask(lengths): mask = torch.arange(lengths.max()).unsqueeze(0).expand(lengths.shape[0], -1).type_as(lengths) mask = torch.gt(mask+1, lengths.unsqueeze(1)) return mask def preprocess(wave): wave_tensor = torch.from_numpy(wave).float() mel_tensor = to_mel(wave_tensor) mel_tensor = (torch.log(1e-5 + mel_tensor.unsqueeze(0)) - mean) / std return mel_tensor def compute_style(path): wave, sr = librosa.load(path, sr=24000) audio, index = librosa.effects.trim(wave, top_db=30) if sr != 24000: audio = librosa.resample(audio, sr, 24000) mel_tensor = preprocess(audio).to(device) with torch.no_grad(): ref_s = model.style_encoder(mel_tensor.unsqueeze(1)) ref_p = model.predictor_encoder(mel_tensor.unsqueeze(1)) return torch.cat([ref_s, ref_p], dim=1) device = 'cpu' if torch.cuda.is_available(): device = 'cuda' elif torch.backends.mps.is_available(): print("MPS would be available but cannot be used rn") # device = 'mps' import phonemizer global_phonemizer = phonemizer.backend.EspeakBackend(language='en-us', preserve_punctuation=True, with_stress=True) # phonemizer = Phonemizer.from_checkpoint(str(cached_path('https://public-asai-dl-models.s3.eu-central-1.amazonaws.com/DeepPhonemizer/en_us_cmudict_ipa_forward.pt'))) # config = yaml.safe_load(open("Models/LibriTTS/config.yml")) config = yaml.safe_load(open(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/config.yml")))) # load pretrained ASR model ASR_config = config.get('ASR_config', False) ASR_path = config.get('ASR_path', False) text_aligner = load_ASR_models(ASR_path, ASR_config) # load pretrained F0 model F0_path = config.get('F0_path', False) pitch_extractor = load_F0_models(F0_path) # load BERT model from Utils.PLBERT.util import load_plbert BERT_path = config.get('PLBERT_dir', False) plbert = load_plbert(BERT_path) model_params = recursive_munch(config['model_params']) model = build_model(model_params, text_aligner, pitch_extractor, plbert) _ = [model[key].eval() for key in model] _ = [model[key].to(device) for key in model] # params_whole = torch.load("Models/LibriTTS/epochs_2nd_00020.pth", map_location='cpu') params_whole = torch.load(str(cached_path("hf://yl4579/StyleTTS2-LibriTTS/Models/LibriTTS/epochs_2nd_00020.pth")), map_location='cpu') params = params_whole['net'] for key in model: if key in params: print('%s loaded' % key) try: model[key].load_state_dict(params[key]) except: from collections import OrderedDict state_dict = params[key] new_state_dict = OrderedDict() for k, v in state_dict.items(): name = k[7:] # remove `module.` new_state_dict[name] = v # load params model[key].load_state_dict(new_state_dict, strict=False) # except: # _load(params[key], model[key]) _ = [model[key].eval() for key in model] from Modules.diffusion.sampler import DiffusionSampler, ADPM2Sampler, KarrasSchedule sampler = DiffusionSampler( model.diffusion.diffusion, sampler=ADPM2Sampler(), sigma_schedule=KarrasSchedule(sigma_min=0.0001, sigma_max=3.0, rho=9.0), # empirical parameters clamp=False ) LANG_NAMES = { # natural; supported by nltk 'en-us': 'english', 'cs': 'czech', 'da': 'danish', 'nl': 'dutch', 'et': 'estonian', 'fi': 'finnish', 'fr': 'french', 'de': 'german', 'el': 'greek', 'it': 'italian', 'no': 'norwegian', 'pl': 'polish', 'pt': 'portuguese', 'ru': 'russian', 'sl': 'slovene', 'es': 'spanish', 'sv': 'swedish', 'tr': 'turkish', } def inference(text, ref_s, lang='en-us', alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False): text = text.strip() # search for IPA within [] regex = r"\[[^\]]*\]" # remove all non-IPA sections text = text.replace('[]', '') ipa_sections = re.findall(regex, text) # replace IPA sections with [] if (ipa_sections is not None): text = re.sub(regex, '[]', text, 0, re.MULTILINE) if lang in LANG_NAMES: local_phonemizer = phonemizer.backend.EspeakBackend(language=lang, preserve_punctuation=True, with_stress=True) ps = local_phonemizer.phonemize([text]) ps = word_tokenize(ps[0], language=LANG_NAMES[lang]) ps = ' '.join(ps) elif lang == 'jb': # Lojban language import lojban ps = lojban.lojban2ipa(text, 'vits') else: ps = text # add the IPA back if (ipa_sections is not None): for ipa in ipa_sections: ps = ps.replace('[ ]', ipa, 1) tokens = textclenaer(ps) tokens.insert(0, 0) tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) with torch.no_grad(): input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) t_en = model.text_encoder(tokens, input_lengths, text_mask) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), embedding=bert_dur, embedding_scale=embedding_scale, features=ref_s, # reference from the same speaker as the embedding num_steps=diffusion_steps).squeeze(1) s = s_pred[:, 128:] ref = s_pred[:, :128] ref = alpha * ref + (1 - alpha) * ref_s[:, :128] s = beta * s + (1 - beta) * ref_s[:, 128:] d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) pred_dur = torch.round(duration.squeeze()).clamp(min=1) pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 c_frame += int(pred_dur[i].data) # encode prosody en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(en) asr_new[:, :, 0] = en[:, :, 0] asr_new[:, :, 1:] = en[:, :, 0:-1] en = asr_new F0_pred, N_pred = model.predictor.F0Ntrain(en, s) asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(asr) asr_new[:, :, 0] = asr[:, :, 0] asr_new[:, :, 1:] = asr[:, :, 0:-1] asr = asr_new out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) return out.squeeze().cpu().numpy()[..., :-50], ps # weird pulse at the end of the model, need to be fixed later def LFinference(text, s_prev, ref_s, alpha = 0.3, beta = 0.7, t = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False): text = text.strip() ps = global_phonemizer.phonemize([text]) ps = word_tokenize(ps[0]) ps = ' '.join(ps) ps = ps.replace('``', '"') ps = ps.replace("''", '"') tokens = textclenaer(ps) tokens.insert(0, 0) tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) with torch.no_grad(): input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) t_en = model.text_encoder(tokens, input_lengths, text_mask) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), embedding=bert_dur, embedding_scale=embedding_scale, features=ref_s, # reference from the same speaker as the embedding num_steps=diffusion_steps).squeeze(1) if s_prev is not None: # convex combination of previous and current style s_pred = t * s_prev + (1 - t) * s_pred s = s_pred[:, 128:] ref = s_pred[:, :128] ref = alpha * ref + (1 - alpha) * ref_s[:, :128] s = beta * s + (1 - beta) * ref_s[:, 128:] s_pred = torch.cat([ref, s], dim=-1) d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) pred_dur = torch.round(duration.squeeze()).clamp(min=1) pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 c_frame += int(pred_dur[i].data) # encode prosody en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(en) asr_new[:, :, 0] = en[:, :, 0] asr_new[:, :, 1:] = en[:, :, 0:-1] en = asr_new F0_pred, N_pred = model.predictor.F0Ntrain(en, s) asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(asr) asr_new[:, :, 0] = asr[:, :, 0] asr_new[:, :, 1:] = asr[:, :, 0:-1] asr = asr_new out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) return out.squeeze().cpu().numpy()[..., :-100], s_pred # weird pulse at the end of the model, need to be fixed later def STinference(text, ref_s, ref_text, alpha = 0.3, beta = 0.7, diffusion_steps=5, embedding_scale=1, use_gruut=False): text = text.strip() ps = global_phonemizer.phonemize([text]) ps = word_tokenize(ps[0]) ps = ' '.join(ps) tokens = textclenaer(ps) tokens.insert(0, 0) tokens = torch.LongTensor(tokens).to(device).unsqueeze(0) ref_text = ref_text.strip() ps = global_phonemizer.phonemize([ref_text]) ps = word_tokenize(ps[0]) ps = ' '.join(ps) ref_tokens = textclenaer(ps) ref_tokens.insert(0, 0) ref_tokens = torch.LongTensor(ref_tokens).to(device).unsqueeze(0) with torch.no_grad(): input_lengths = torch.LongTensor([tokens.shape[-1]]).to(device) text_mask = length_to_mask(input_lengths).to(device) t_en = model.text_encoder(tokens, input_lengths, text_mask) bert_dur = model.bert(tokens, attention_mask=(~text_mask).int()) d_en = model.bert_encoder(bert_dur).transpose(-1, -2) ref_input_lengths = torch.LongTensor([ref_tokens.shape[-1]]).to(device) ref_text_mask = length_to_mask(ref_input_lengths).to(device) ref_bert_dur = model.bert(ref_tokens, attention_mask=(~ref_text_mask).int()) s_pred = sampler(noise = torch.randn((1, 256)).unsqueeze(1).to(device), embedding=bert_dur, embedding_scale=embedding_scale, features=ref_s, # reference from the same speaker as the embedding num_steps=diffusion_steps).squeeze(1) s = s_pred[:, 128:] ref = s_pred[:, :128] ref = alpha * ref + (1 - alpha) * ref_s[:, :128] s = beta * s + (1 - beta) * ref_s[:, 128:] d = model.predictor.text_encoder(d_en, s, input_lengths, text_mask) x, _ = model.predictor.lstm(d) duration = model.predictor.duration_proj(x) duration = torch.sigmoid(duration).sum(axis=-1) pred_dur = torch.round(duration.squeeze()).clamp(min=1) pred_aln_trg = torch.zeros(input_lengths, int(pred_dur.sum().data)) c_frame = 0 for i in range(pred_aln_trg.size(0)): pred_aln_trg[i, c_frame:c_frame + int(pred_dur[i].data)] = 1 c_frame += int(pred_dur[i].data) # encode prosody en = (d.transpose(-1, -2) @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(en) asr_new[:, :, 0] = en[:, :, 0] asr_new[:, :, 1:] = en[:, :, 0:-1] en = asr_new F0_pred, N_pred = model.predictor.F0Ntrain(en, s) asr = (t_en @ pred_aln_trg.unsqueeze(0).to(device)) if model_params.decoder.type == "hifigan": asr_new = torch.zeros_like(asr) asr_new[:, :, 0] = asr[:, :, 0] asr_new[:, :, 1:] = asr[:, :, 0:-1] asr = asr_new out = model.decoder(asr, F0_pred, N_pred, ref.squeeze().unsqueeze(0)) return out.squeeze().cpu().numpy()[..., :-50] # weird pulse at the end of the model, need to be fixed later