from __future__ import print_function, division, unicode_literals import gradio as gr import sys import os from os.path import abspath, dirname import json import numpy as np from torchmoji.sentence_tokenizer import SentenceTokenizer from torchmoji.model_def import torchmoji_emojis from emoji import emojize from huggingface_hub import hf_hub_download HF_TOKEN = os.getenv('HF_TOKEN') hf_writer = gr.HuggingFaceDatasetSaver( HF_TOKEN, "crowdsourced-deepmoji-flags", private=True, separate_dirs=False ) model_name = "Pendrokar/TorchMoji" model_path = hf_hub_download(repo_id=model_name, filename="pytorch_model.bin") vocab_path = hf_hub_download(repo_id=model_name, filename="vocabulary.json") emoji_codes = [] with open('./data/emoji_codes.json', 'r') as f: emoji_codes = json.load(f) maxlen = 30 with open(vocab_path, 'r') as f: vocabulary = json.load(f) st = SentenceTokenizer(vocabulary, maxlen) model = torchmoji_emojis(model_path) def pre_hf_writer(*args): return hf_writer(args) def top_elements(array, k): ind = np.argpartition(array, -k)[-k:] return ind[np.argsort(array[ind])][::-1] def predict(deepmoji_analysis, emoji_count): if deepmoji_analysis.strip() == '': # dotted face emoji return {"🫥":1} return_label = {} # tokenize input text tokenized, _, _ = st.tokenize_sentences([deepmoji_analysis]) if len(tokenized) == 0: # dotted face emoji return {"🫥":1} prob = model(tokenized) for prob in [prob]: # Find top emojis for each sentence. Emoji ids (0-63) # correspond to the mapping in emoji_overview.png # at the root of the torchMoji repo. scores = [] for i, t in enumerate([deepmoji_analysis]): t_prob = prob[i] # sort top ind_top_ids = top_elements(t_prob, emoji_count) for ind in ind_top_ids: # unicode emoji + :alias: label_emoji = emojize(emoji_codes[str(ind)], language="alias") label_name = label_emoji + emoji_codes[str(ind)] # propability label_prob = t_prob[ind] return_label[label_name] = label_prob if len(return_label) == 0: # dotted face emoji return {"🫥":1} return return_label default_input = "This is the shit!" input_textbox = gr.Textbox( label="English Text", info="ignores: emojis, emoticons, numbers, URLs", lines=1, value=default_input, autofocus=True ) slider = gr.Slider(1, 64, value=5, step=1, label="Top # Emoji", info="Choose between 1 and 64 top emojis to show") gradio_app = gr.Interface( predict, [ input_textbox, slider, ], outputs=gr.Label( label="Suitable Emoji", # could not auto select example output value={ "🎧:headphones:" :0.10912112891674042, "🎶:notes:" :0.10073345899581909, "👌:ok_hand:" :0.05672002583742142, "👏:clap:" :0.0559493824839592, "👍:thumbsup:" :0.05157269537448883 } ), examples=[ ["This is shit!", 5], ["You love hurting me, huh?", 5], ["I know good movies, this ain't one", 5], ["It was fun, but I'm not going to miss you", 5], ["My flight is delayed.. amazing.", 5], ["What is happening to me??", 5], ], cache_examples=True, live=True, title="🎭 DeepMoji 🎭", # allow_duplication=True, # flagged saved to hf dataset # FIXME: gradio sends output as a saveable filename, crashing flagging # allow_flagging="manual", # flagging_options=["'🚩 sarcasm / innuendo 😏'", "'🚩 unsuitable / other'"], # flagging_callback=hf_writer ) if __name__ == "__main__": gradio_app.launch()