from fastai.vision.all import * import gradio as gr def is_cat(x): return x[0].isupper() learner = load_learner("cat-dog-model.pkl") categories = ["Dog", "Cat"] def classify_image(im): _pred, _idx, probs = learner.predict(im) return dict(zip(categories, map(float, probs))) # create interface im = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ["dog.jpg", "cat.jpg", "cog.jpg", "cog2.png", "cog3.png"] examples = [f"imgs/{im}" for im in examples] iface = gr.Interface(fn=classify_image, inputs=im, outputs=label, examples=examples) iface.launch(inline=False)