import streamlit as st from gradio_client import Client from llama_index.llms import Replicate from llama_index.embeddings import LangchainEmbedding from langchain.embeddings.huggingface import HuggingFaceEmbeddings from llama_index import set_global_service_context, ServiceContext, VectorStoreIndex, SimpleDirectoryReader import os PATH='/Data' # Ensure the environment variable is set if "REPLICATE_API_TOKEN" not in os.environ: raise ValueError("Please set the REPLICATE_API_TOKEN environment variable.") else: os.environ["REPLICATE_API_TOKEN"] = os.environ["REPLICATE_API_TOKEN"] llm = Replicate( model="replicate/vicuna-13b:6282abe6a492de4145d7bb601023762212f9ddbbe78278bd6771c8b3b2f2a13b" ) embeddings = LangchainEmbedding( HuggingFaceEmbeddings(model_name="all-MiniLM-L6-v2") ) service_context = ServiceContext.from_defaults( chunk_size=1024, llm=llm, embed_model=embeddings ) set_global_service_context(service_context) # Transcribe function def transcribe_video(youtube_url): with st.status("Starting client"): client = Client("https://sanchit-gandhi-whisper-jax.hf.space/") st.write("Requesting client") with st.status("Requesting Whisper"): result = client.predict(youtube_url, "transcribe", True, fn_index=7) st.write("Requesting API...") with open(f'{PATH}/docs.txt','w') as f: f.write(result[1]) st.write('Writing File...') with st.status("Requesting Embeddings"): documents = SimpleDirectoryReader(PATH).load_data() index = VectorStoreIndex.from_documents(documents) return index.as_query_engine() # Streamlit UI st.title("YouTube Video Chatbot") # Input for YouTube URL youtube_url = st.text_input("Enter YouTube Video URL:") if youtube_url and "query_engine" not in st.session_state: st.write("Transcribing video... Please wait.") st.session_state.query_engine = transcribe_video(youtube_url) if "messages" not in st.session_state: st.session_state.messages = [] # Display chat messages from history on app rerun for message in st.session_state.messages: with st.chat_message(message["role"], avatar=("🧑‍💻" if message["role"] == 'human' else '🦙')): st.markdown(message["content"]) # User input prompt = st.chat_input("Ask something about the video:") if prompt := prompt and "query_engine" in st.session_state: # Display user message in chat message container st.chat_message("human",avatar = "🧑‍💻").markdown(prompt) # Add user message to chat history st.session_state.messages.append({"role": "human", "content": prompt}) response = st.session_state.query_engine.query(prompt) response_text = response.response with st.chat_message("assistant", avatar='🦙'): st.markdown(response_text) # Add assistant response to chat history st.session_state.messages.append({"role": "assistant", "content": response})