# import gradio as gr # # def greet(name): # return "Hello " + name + "!!" # # iface = gr.Interface(fn=greet, inputs="text", outputs="text") # iface.launch() # Cell from fastai.vision.all import * import gradio as gr import timm import dill def is_catan(x): # print(x[:5]) # print(x[:5] == 'Catan') return x[:5] == 'Catan' # Cell learn = load_learner('catan-model-paperspace.pkl', pickle_module=dill) # Cell # categories = learn.dls.vocab categories = ('Not Catan', 'Catan') def classify_image(img): pred, idx, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Cell image = gr.inputs.Image(shape=(192, 192)) label = gr.outputs.Label() examples = ['board-game-catan-IMG_4671.jpg', 'photo-of-macbook-catan-IMG_4817.jpg'] # Cell intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) intf.launch()