import streamlit as st import cv2 import numpy as np import tempfile import os from langchain_community.document_loaders import UnstructuredImageLoader from langchain.prompts import PromptTemplate from langchain.chains import LLMChain from langchain_huggingface import HuggingFaceEndpoint, ChatHuggingFace # Set Hugging Face API key os.environ["HUGGINGFACEHUB_API_KEY"] = os.getenv("hf") st.set_page_config(page_title="MediAssist - Prescription Analyzer", layout="wide") # Sidebar st.sidebar.title("😷 Medical Chatbot") st.sidebar.markdown("Analyze prescriptions with ease using AI") st.sidebar.markdown("---") # App Header st.markdown("""

🧠 Medical Chatbot

Prescription Analyzer using AI

Upload a doctor's prescription image, and MediAssist will extract, translate, and explain it for you.


""", unsafe_allow_html=True) # File uploader uploaded_file = st.file_uploader("📤 Upload Prescription Image (JPG/PNG)", type=["jpg", "jpeg", "png"]) if uploaded_file: with tempfile.NamedTemporaryFile(delete=False, suffix=".png") as temp_file: temp_file.write(uploaded_file.read()) orig_path = temp_file.name # Step 1: Read and preprocess image image = cv2.imread(orig_path) gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) _, binary_inv = cv2.threshold(gray, 128, 255, cv2.THRESH_BINARY_INV) kernel = np.ones((3, 3), np.uint8) dilated = cv2.dilate(binary_inv, kernel, iterations=1) # Save processed image for OCR dilated_path = orig_path.replace(".png", "_dilated.png") cv2.imwrite(dilated_path, dilated) # Load with LangChain loader = UnstructuredImageLoader(dilated_path) documents = loader.load() extracted_text = "\n".join([doc.page_content for doc in documents]) # Prompt template template = """ You are a helpful medical assistant. Here is a prescription text extracted from an image: {prescription_text} Please do the following: 1. Extract only the medicine names mentioned in the prescription (ignore any other text). 2. For each medicine, provide: - When to take it (timing and dosage) - Possible side effects - Any special instructions Format your answer as bullet points, listing only medicines and their details. """ prompt = PromptTemplate(input_variables=["prescription_text"], template=template) # Set up Hugging Face LLM llm_model = HuggingFaceEndpoint( repo_id="aaditya/Llama3-OpenBioLLM-70B", provider="nebius", temperature=0.6, max_new_tokens=300, task="conversational" ) model = ChatHuggingFace( llm=llm_model, repo_id="aaditya/Llama3-OpenBioLLM-70B", provider="nebius", temperature=0.6, max_new_tokens=300, task="conversational" ) chain = LLMChain(llm=model, prompt=prompt) # Display image and extracted text col1, col2 = st.columns([1, 2]) with col1: st.image(dilated, caption="Preprocessed Prescription", channels="GRAY", use_container_width=True) with col2: st.success("✅ Prescription Uploaded & Preprocessed Successfully") st.markdown("### 📜 Extracted Text") st.code(extracted_text) if st.button("🔍 Analyze Text"): with st.spinner("Analyzing..."): response = chain.run(prescription_text=extracted_text) st.success(response) # Cleanup temp files os.remove(orig_path) os.remove(dilated_path) else: st.markdown("
Upload a prescription image to begin analysis.
", unsafe_allow_html=True)