import time import gradio as gr import os import asyncio from pymongo import MongoClient from langchain_community.vectorstores import MongoDBAtlasVectorSearch from langchain_openai import OpenAIEmbeddings from langchain_community.llms import OpenAI from langchain_openai import ChatOpenAI from langchain_core.prompts import ChatPromptTemplate from langchain_core.output_parsers import StrOutputParser output_parser = StrOutputParser() import json ## Connect to MongoDB Atlas MONGODB_ATLAS_CLUSTER_URI = os.getenv('MONGODB_ATLAS_CLUSTER_URI') client = MongoClient(MONGODB_ATLAS_CLUSTER_URI) db_name = 'sample_mflix' collection_name = 'embedded_movies' collection = client[db_name][collection_name] try: ## Vector store init vector_store = MongoDBAtlasVectorSearch(embedding=OpenAIEmbeddings(), collection=collection, index_name='vector_index', text_key='plot', embedding_key='plot_embedding') ## LLM init llm = ChatOpenAI(temperature=0) prompt = ChatPromptTemplate.from_messages([ ("system", "You are a movie recommendation engine which post a concise and short summary on relevant movies."), ("user", "List of movies: {input}") ]) ## RAG Chain chain = prompt | llm | output_parser except: #If open ai key is wrong print ('Open AI key is wrong') vector_store = None def get_movies(message, history): try: ### Get top 3 picks movies = vector_store.similarity_search(message, 3) return_text = '' for movie in movies: return_text = return_text + 'Title : ' + movie.metadata['title'] + '\n------------\n' + 'Plot: ' + movie.page_content + '\n\n' ## Invoke RAG on the located documents print_llm_text = chain.invoke({"input": return_text}) for i in range(len(print_llm_text)): time.sleep(0.05) yield "Found: " + "\n\n" + print_llm_text[: i+1] except: yield "Please clone the space and add your open ai key as well as your MongoDB Atlas URI in the Secret Section of you Space\n OPENAI_API_KEY (your Open AI key) and MONGODB_ATLAS_CLUSTER_URI (0.0.0.0/0 whitelisted instance with Vector index created) \n\n For more information : https://mongodb.com/products/platform/atlas-vector-search" ## Start gradio chat interface demo = gr.ChatInterface(get_movies, examples=["What movies are scary?", "Find me a comedy", "Movies for kids"], title="Movies Atlas Vector Search",description="This small chat uses a similarity search to find relevant movies, it uses an MongoDB Atlase Vector Search read more here: https://www.mongodb.com/docs/atlas/atlas-vector-search/vector-search-tutorial",submit_btn="Search").queue() if __name__ == "__main__": demo.launch()