import os import shutil from glob import glob from transformers import AutoTokenizer from langchain import HuggingFacePipeline from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceEmbeddings from langchain.text_splitter import CharacterTextSplitter from langchain.vectorstores import Chroma from langchain.document_loaders import BSHTMLLoader, DirectoryLoader bshtml_dir_loader = DirectoryLoader('./data/', loader_cls=BSHTMLLoader) data = bshtml_dir_loader.load() bloomz_tokenizer = AutoTokenizer.from_pretrained('bigscience/bloomz-1b7') text_splitter = CharacterTextSplitter.from_huggingface_tokenizer(bloomz_tokenizer, chunk_size=100, chunk_overlap=0, separator="\n") documents = text_splitter.split_documents(data) embeddings = HuggingFaceEmbeddings() persist_directory = "vector_db" vectordb = Chroma.from_documents(documents=documents, embedding=embeddings, persist_directory=persist_directory) vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) vectordb.persist() vectordb = None vectordb = Chroma(persist_directory=persist_directory, embedding_function=embeddings) llm = HuggingFacePipeline.from_model_id( model_id="bigscience/bloomz-1b7", task="text-generation", model_kwargs={"temperature" : 0, "max_length" : 500}) doc_retriever = vectordb.as_retriever() shakespeare_qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=doc_retriever) def make_inference(query): # docs = docsearch.get_relevant_documents(query) # return(chain.run(input_documents=docs, question=query)) return(shakespeare_qa.run(query)) if __name__ == "__main__": # make a gradio interface import gradio as gr gr.Interface( make_inference, [ gr.inputs.Textbox(lines=2, label="Query"), ], gr.outputs.Textbox(label="Response"), title="🗣️TalkToMyShakespeare📄", description="🗣️TalkToMyShakespeare📄 is a tool that allows you to ask questions about Shakespeare literature work.", ).launch()