import gradio as gr from fastai.vision.all import * learn = load_learner('model.pkl') labels = learn.dls.vocab def predict(img): img = PILImage.create(img) pred, pred_idx, probs = learn.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} title = "Gradio test" description = "Quick Fastai classifier for bird/forest." examples = ['examples/bird.jpg', 'examples/tree.jpg', 'examples/rainforest.jpg'] gr.Interface( fn=predict, inputs=gr.Image(), outputs=gr.Label(num_top_classes=2), title=title, description=description, examples=examples, ).launch() iface.launch()