from huggingface_hub import from_pretrained_fastai import gradio as gr from fastai.vision.all import * # repo_id = "YOUR_USERNAME/YOUR_LEARNER_NAME" repo_id = "PablitoGil14/AP-Practica1" learner = from_pretrained_fastai(repo_id) labels = learner.dls.vocab # Definimos una función que se encarga de llevar a cabo las predicciones def predict(img): #img = PILImage.create(img) pred,pred_idx,probs = learner.predict(img) return {labels[i]: float(probs[i]) for i in range(len(labels))} # Creamos la interfaz y la lanzamos. #gr.Interface(fn=predict, inputs=gr.Image(shape=(128, 128)), outputs=gr.Label(num_top_classes=10),examples=['10408675.jpg','2064213021d.jpg']).launch(share=False) gr.Interface(fn=predict, inputs="image", outputs="label", examples=['10408675.jpg','2064213021d.jpg']).launch(share=True)