File size: 131,136 Bytes
e69a9f5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
# common functions for training

import argparse
import ast
import importlib
import json
import pathlib
import re
import shutil
import time
from typing import (
    Dict,
    List,
    NamedTuple,
    Optional,
    Sequence,
    Tuple,
    Union,
)
from accelerate import Accelerator
import glob
import math
import os
import random
import hashlib
import subprocess
from io import BytesIO
import toml

from tqdm import tqdm
import torch
from torch.optim import Optimizer
from torchvision import transforms
from transformers import CLIPTokenizer
import transformers
import diffusers
from diffusers.optimization import SchedulerType, TYPE_TO_SCHEDULER_FUNCTION
from diffusers import (
    StableDiffusionPipeline,
    DDPMScheduler,
    EulerAncestralDiscreteScheduler,
    DPMSolverMultistepScheduler,
    DPMSolverSinglestepScheduler,
    LMSDiscreteScheduler,
    PNDMScheduler,
    DDIMScheduler,
    EulerDiscreteScheduler,
    HeunDiscreteScheduler,
    KDPM2DiscreteScheduler,
    KDPM2AncestralDiscreteScheduler,
)
import albumentations as albu
import numpy as np
from PIL import Image
import cv2
from einops import rearrange
from torch import einsum
import safetensors.torch
from library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipeline
import library.model_util as model_util

# Tokenizer: checkpointから読み込むのではなくあらかじめ提供されているものを使う
TOKENIZER_PATH = "openai/clip-vit-large-patch14"
V2_STABLE_DIFFUSION_PATH = "stabilityai/stable-diffusion-2"  # ここからtokenizerだけ使う v2とv2.1はtokenizer仕様は同じ

# checkpointファイル名
EPOCH_STATE_NAME = "{}-{:06d}-state"
EPOCH_FILE_NAME = "{}-{:06d}"
EPOCH_DIFFUSERS_DIR_NAME = "{}-{:06d}"
LAST_STATE_NAME = "{}-state"
DEFAULT_EPOCH_NAME = "epoch"
DEFAULT_LAST_OUTPUT_NAME = "last"

# region dataset

IMAGE_EXTENSIONS = [".png", ".jpg", ".jpeg", ".webp", ".bmp", ".PNG", ".JPG", ".JPEG", ".WEBP", ".BMP"]


class ImageInfo:
    def __init__(self, image_key: str, num_repeats: int, caption: str, is_reg: bool, absolute_path: str) -> None:
        self.image_key: str = image_key
        self.num_repeats: int = num_repeats
        self.caption: str = caption
        self.is_reg: bool = is_reg
        self.absolute_path: str = absolute_path
        self.image_size: Tuple[int, int] = None
        self.resized_size: Tuple[int, int] = None
        self.bucket_reso: Tuple[int, int] = None
        self.latents: torch.Tensor = None
        self.latents_flipped: torch.Tensor = None
        self.latents_npz: str = None
        self.latents_npz_flipped: str = None


class BucketManager:
    def __init__(self, no_upscale, max_reso, min_size, max_size, reso_steps) -> None:
        self.no_upscale = no_upscale
        if max_reso is None:
            self.max_reso = None
            self.max_area = None
        else:
            self.max_reso = max_reso
            self.max_area = max_reso[0] * max_reso[1]
        self.min_size = min_size
        self.max_size = max_size
        self.reso_steps = reso_steps

        self.resos = []
        self.reso_to_id = {}
        self.buckets = []  # 前処理時は (image_key, image)、学習時は image_key

    def add_image(self, reso, image):
        bucket_id = self.reso_to_id[reso]
        self.buckets[bucket_id].append(image)

    def shuffle(self):
        for bucket in self.buckets:
            random.shuffle(bucket)

    def sort(self):
        # 解像度順にソートする(表示時、メタデータ格納時の見栄えをよくするためだけ)。bucketsも入れ替えてreso_to_idも振り直す
        sorted_resos = self.resos.copy()
        sorted_resos.sort()

        sorted_buckets = []
        sorted_reso_to_id = {}
        for i, reso in enumerate(sorted_resos):
            bucket_id = self.reso_to_id[reso]
            sorted_buckets.append(self.buckets[bucket_id])
            sorted_reso_to_id[reso] = i

        self.resos = sorted_resos
        self.buckets = sorted_buckets
        self.reso_to_id = sorted_reso_to_id

    def make_buckets(self):
        resos = model_util.make_bucket_resolutions(self.max_reso, self.min_size, self.max_size, self.reso_steps)
        self.set_predefined_resos(resos)

    def set_predefined_resos(self, resos):
        # 規定サイズから選ぶ場合の解像度、aspect ratioの情報を格納しておく
        self.predefined_resos = resos.copy()
        self.predefined_resos_set = set(resos)
        self.predefined_aspect_ratios = np.array([w / h for w, h in resos])

    def add_if_new_reso(self, reso):
        if reso not in self.reso_to_id:
            bucket_id = len(self.resos)
            self.reso_to_id[reso] = bucket_id
            self.resos.append(reso)
            self.buckets.append([])
            # print(reso, bucket_id, len(self.buckets))

    def round_to_steps(self, x):
        x = int(x + 0.5)
        return x - x % self.reso_steps

    def select_bucket(self, image_width, image_height):
        aspect_ratio = image_width / image_height
        if not self.no_upscale:
            # 同じaspect ratioがあるかもしれないので(fine tuningで、no_upscale=Trueで前処理した場合)、解像度が同じものを優先する
            reso = (image_width, image_height)
            if reso in self.predefined_resos_set:
                pass
            else:
                ar_errors = self.predefined_aspect_ratios - aspect_ratio
                predefined_bucket_id = np.abs(ar_errors).argmin()  # 当該解像度以外でaspect ratio errorが最も少ないもの
                reso = self.predefined_resos[predefined_bucket_id]

            ar_reso = reso[0] / reso[1]
            if aspect_ratio > ar_reso:  # 横が長い→縦を合わせる
                scale = reso[1] / image_height
            else:
                scale = reso[0] / image_width

            resized_size = (int(image_width * scale + 0.5), int(image_height * scale + 0.5))
            # print("use predef", image_width, image_height, reso, resized_size)
        else:
            if image_width * image_height > self.max_area:
                # 画像が大きすぎるのでアスペクト比を保ったまま縮小することを前提にbucketを決める
                resized_width = math.sqrt(self.max_area * aspect_ratio)
                resized_height = self.max_area / resized_width
                assert abs(resized_width / resized_height - aspect_ratio) < 1e-2, "aspect is illegal"

                # リサイズ後の短辺または長辺をreso_steps単位にする:aspect ratioの差が少ないほうを選ぶ
                # 元のbucketingと同じロジック
                b_width_rounded = self.round_to_steps(resized_width)
                b_height_in_wr = self.round_to_steps(b_width_rounded / aspect_ratio)
                ar_width_rounded = b_width_rounded / b_height_in_wr

                b_height_rounded = self.round_to_steps(resized_height)
                b_width_in_hr = self.round_to_steps(b_height_rounded * aspect_ratio)
                ar_height_rounded = b_width_in_hr / b_height_rounded

                # print(b_width_rounded, b_height_in_wr, ar_width_rounded)
                # print(b_width_in_hr, b_height_rounded, ar_height_rounded)

                if abs(ar_width_rounded - aspect_ratio) < abs(ar_height_rounded - aspect_ratio):
                    resized_size = (b_width_rounded, int(b_width_rounded / aspect_ratio + 0.5))
                else:
                    resized_size = (int(b_height_rounded * aspect_ratio + 0.5), b_height_rounded)
                # print(resized_size)
            else:
                resized_size = (image_width, image_height)  # リサイズは不要

            # 画像のサイズ未満をbucketのサイズとする(paddingせずにcroppingする)
            bucket_width = resized_size[0] - resized_size[0] % self.reso_steps
            bucket_height = resized_size[1] - resized_size[1] % self.reso_steps
            # print("use arbitrary", image_width, image_height, resized_size, bucket_width, bucket_height)

            reso = (bucket_width, bucket_height)

        self.add_if_new_reso(reso)

        ar_error = (reso[0] / reso[1]) - aspect_ratio
        return reso, resized_size, ar_error


class BucketBatchIndex(NamedTuple):
    bucket_index: int
    bucket_batch_size: int
    batch_index: int


class AugHelper:
    def __init__(self):
        # prepare all possible augmentators
        color_aug_method = albu.OneOf(
            [
                albu.HueSaturationValue(8, 0, 0, p=0.5),
                albu.RandomGamma((95, 105), p=0.5),
            ],
            p=0.33,
        )
        flip_aug_method = albu.HorizontalFlip(p=0.5)

        # key: (use_color_aug, use_flip_aug)
        self.augmentors = {
            (True, True): albu.Compose(
                [
                    color_aug_method,
                    flip_aug_method,
                ],
                p=1.0,
            ),
            (True, False): albu.Compose(
                [
                    color_aug_method,
                ],
                p=1.0,
            ),
            (False, True): albu.Compose(
                [
                    flip_aug_method,
                ],
                p=1.0,
            ),
            (False, False): None,
        }

    def get_augmentor(self, use_color_aug: bool, use_flip_aug: bool) -> Optional[albu.Compose]:
        return self.augmentors[(use_color_aug, use_flip_aug)]


class BaseSubset:
    def __init__(
        self,
        image_dir: Optional[str],
        num_repeats: int,
        shuffle_caption: bool,
        keep_tokens: int,
        color_aug: bool,
        flip_aug: bool,
        face_crop_aug_range: Optional[Tuple[float, float]],
        random_crop: bool,
        caption_dropout_rate: float,
        caption_dropout_every_n_epochs: int,
        caption_tag_dropout_rate: float,
        token_warmup_min: int,
        token_warmup_step: Union[float, int],
    ) -> None:
        self.image_dir = image_dir
        self.num_repeats = num_repeats
        self.shuffle_caption = shuffle_caption
        self.keep_tokens = keep_tokens
        self.color_aug = color_aug
        self.flip_aug = flip_aug
        self.face_crop_aug_range = face_crop_aug_range
        self.random_crop = random_crop
        self.caption_dropout_rate = caption_dropout_rate
        self.caption_dropout_every_n_epochs = caption_dropout_every_n_epochs
        self.caption_tag_dropout_rate = caption_tag_dropout_rate

        self.token_warmup_min = token_warmup_min  # step=0におけるタグの数
        self.token_warmup_step = token_warmup_step  # N(N<1ならN*max_train_steps)ステップ目でタグの数が最大になる

        self.img_count = 0


class DreamBoothSubset(BaseSubset):
    def __init__(
        self,
        image_dir: str,
        is_reg: bool,
        class_tokens: Optional[str],
        caption_extension: str,
        num_repeats,
        shuffle_caption,
        keep_tokens,
        color_aug,
        flip_aug,
        face_crop_aug_range,
        random_crop,
        caption_dropout_rate,
        caption_dropout_every_n_epochs,
        caption_tag_dropout_rate,
        token_warmup_min,
        token_warmup_step,
    ) -> None:
        assert image_dir is not None, "image_dir must be specified / image_dirは指定が必須です"

        super().__init__(
            image_dir,
            num_repeats,
            shuffle_caption,
            keep_tokens,
            color_aug,
            flip_aug,
            face_crop_aug_range,
            random_crop,
            caption_dropout_rate,
            caption_dropout_every_n_epochs,
            caption_tag_dropout_rate,
            token_warmup_min,
            token_warmup_step,
        )

        self.is_reg = is_reg
        self.class_tokens = class_tokens
        self.caption_extension = caption_extension

    def __eq__(self, other) -> bool:
        if not isinstance(other, DreamBoothSubset):
            return NotImplemented
        return self.image_dir == other.image_dir


class FineTuningSubset(BaseSubset):
    def __init__(
        self,
        image_dir,
        metadata_file: str,
        num_repeats,
        shuffle_caption,
        keep_tokens,
        color_aug,
        flip_aug,
        face_crop_aug_range,
        random_crop,
        caption_dropout_rate,
        caption_dropout_every_n_epochs,
        caption_tag_dropout_rate,
        token_warmup_min,
        token_warmup_step,
    ) -> None:
        assert metadata_file is not None, "metadata_file must be specified / metadata_fileは指定が必須です"

        super().__init__(
            image_dir,
            num_repeats,
            shuffle_caption,
            keep_tokens,
            color_aug,
            flip_aug,
            face_crop_aug_range,
            random_crop,
            caption_dropout_rate,
            caption_dropout_every_n_epochs,
            caption_tag_dropout_rate,
            token_warmup_min,
            token_warmup_step,
        )

        self.metadata_file = metadata_file

    def __eq__(self, other) -> bool:
        if not isinstance(other, FineTuningSubset):
            return NotImplemented
        return self.metadata_file == other.metadata_file


class BaseDataset(torch.utils.data.Dataset):
    def __init__(
        self, tokenizer: CLIPTokenizer, max_token_length: int, resolution: Optional[Tuple[int, int]], debug_dataset: bool
    ) -> None:
        super().__init__()
        self.tokenizer = tokenizer
        self.max_token_length = max_token_length
        # width/height is used when enable_bucket==False
        self.width, self.height = (None, None) if resolution is None else resolution
        self.debug_dataset = debug_dataset

        self.subsets: List[Union[DreamBoothSubset, FineTuningSubset]] = []

        self.token_padding_disabled = False
        self.tag_frequency = {}
        self.XTI_layers = None
        self.token_strings = None

        self.enable_bucket = False
        self.bucket_manager: BucketManager = None  # not initialized
        self.min_bucket_reso = None
        self.max_bucket_reso = None
        self.bucket_reso_steps = None
        self.bucket_no_upscale = None
        self.bucket_info = None  # for metadata

        self.tokenizer_max_length = self.tokenizer.model_max_length if max_token_length is None else max_token_length + 2

        self.current_epoch: int = 0  # インスタンスがepochごとに新しく作られるようなので外側から渡さないとダメ

        self.current_step: int = 0
        self.max_train_steps: int = 0
        self.seed: int = 0

        # augmentation
        self.aug_helper = AugHelper()

        self.image_transforms = transforms.Compose(
            [
                transforms.ToTensor(),
                transforms.Normalize([0.5], [0.5]),
            ]
        )

        self.image_data: Dict[str, ImageInfo] = {}
        self.image_to_subset: Dict[str, Union[DreamBoothSubset, FineTuningSubset]] = {}

        self.replacements = {}

    def set_seed(self, seed):
        self.seed = seed

    def set_current_epoch(self, epoch):
        if not self.current_epoch == epoch:  # epochが切り替わったらバケツをシャッフルする
            self.shuffle_buckets()
        self.current_epoch = epoch

    def set_current_step(self, step):
        self.current_step = step

    def set_max_train_steps(self, max_train_steps):
        self.max_train_steps = max_train_steps

    def set_tag_frequency(self, dir_name, captions):
        frequency_for_dir = self.tag_frequency.get(dir_name, {})
        self.tag_frequency[dir_name] = frequency_for_dir
        for caption in captions:
            for tag in caption.split(","):
                tag = tag.strip()
                if tag:
                    tag = tag.lower()
                    frequency = frequency_for_dir.get(tag, 0)
                    frequency_for_dir[tag] = frequency + 1

    def disable_token_padding(self):
        self.token_padding_disabled = True

    def enable_XTI(self, layers=None, token_strings=None):
        self.XTI_layers = layers
        self.token_strings = token_strings

    def add_replacement(self, str_from, str_to):
        self.replacements[str_from] = str_to

    def process_caption(self, subset: BaseSubset, caption):
        # dropoutの決定:tag dropがこのメソッド内にあるのでここで行うのが良い
        is_drop_out = subset.caption_dropout_rate > 0 and random.random() < subset.caption_dropout_rate
        is_drop_out = (
            is_drop_out
            or subset.caption_dropout_every_n_epochs > 0
            and self.current_epoch % subset.caption_dropout_every_n_epochs == 0
        )

        if is_drop_out:
            caption = ""
        else:
            if subset.shuffle_caption or subset.token_warmup_step > 0 or subset.caption_tag_dropout_rate > 0:
                tokens = [t.strip() for t in caption.strip().split(",")]
                if subset.token_warmup_step < 1: # 初回に上書きする
                    subset.token_warmup_step = math.floor(subset.token_warmup_step * self.max_train_steps)
                if subset.token_warmup_step and self.current_step < subset.token_warmup_step:
                    tokens_len = (
                        math.floor((self.current_step) * ((len(tokens) - subset.token_warmup_min) / (subset.token_warmup_step)))
                        + subset.token_warmup_min
                    )
                    tokens = tokens[:tokens_len]

                def dropout_tags(tokens):
                    if subset.caption_tag_dropout_rate <= 0:
                        return tokens
                    l = []
                    for token in tokens:
                        if random.random() >= subset.caption_tag_dropout_rate:
                            l.append(token)
                    return l

                fixed_tokens = []
                flex_tokens = tokens[:]
                if subset.keep_tokens > 0:
                    fixed_tokens = flex_tokens[: subset.keep_tokens]
                    flex_tokens = tokens[subset.keep_tokens :]

                if subset.shuffle_caption:
                    random.shuffle(flex_tokens)

                flex_tokens = dropout_tags(flex_tokens)

                caption = ", ".join(fixed_tokens + flex_tokens)

            # textual inversion対応
            for str_from, str_to in self.replacements.items():
                if str_from == "":
                    # replace all
                    if type(str_to) == list:
                        caption = random.choice(str_to)
                    else:
                        caption = str_to
                else:
                    caption = caption.replace(str_from, str_to)

        return caption

    def get_input_ids(self, caption):
        input_ids = self.tokenizer(
            caption, padding="max_length", truncation=True, max_length=self.tokenizer_max_length, return_tensors="pt"
        ).input_ids

        if self.tokenizer_max_length > self.tokenizer.model_max_length:
            input_ids = input_ids.squeeze(0)
            iids_list = []
            if self.tokenizer.pad_token_id == self.tokenizer.eos_token_id:
                # v1
                # 77以上の時は "<BOS> .... <EOS> <EOS> <EOS>" でトータル227とかになっているので、"<BOS>...<EOS>"の三連に変換する
                # 1111氏のやつは , で区切る、とかしているようだが とりあえず単純に
                for i in range(
                    1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2
                ):  # (1, 152, 75)
                    ids_chunk = (
                        input_ids[0].unsqueeze(0),
                        input_ids[i : i + self.tokenizer.model_max_length - 2],
                        input_ids[-1].unsqueeze(0),
                    )
                    ids_chunk = torch.cat(ids_chunk)
                    iids_list.append(ids_chunk)
            else:
                # v2
                # 77以上の時は "<BOS> .... <EOS> <PAD> <PAD>..." でトータル227とかになっているので、"<BOS>...<EOS> <PAD> <PAD> ..."の三連に変換する
                for i in range(
                    1, self.tokenizer_max_length - self.tokenizer.model_max_length + 2, self.tokenizer.model_max_length - 2
                ):
                    ids_chunk = (
                        input_ids[0].unsqueeze(0),  # BOS
                        input_ids[i : i + self.tokenizer.model_max_length - 2],
                        input_ids[-1].unsqueeze(0),
                    )  # PAD or EOS
                    ids_chunk = torch.cat(ids_chunk)

                    # 末尾が <EOS> <PAD> または <PAD> <PAD> の場合は、何もしなくてよい
                    # 末尾が x <PAD/EOS> の場合は末尾を <EOS> に変える(x <EOS> なら結果的に変化なし)
                    if ids_chunk[-2] != self.tokenizer.eos_token_id and ids_chunk[-2] != self.tokenizer.pad_token_id:
                        ids_chunk[-1] = self.tokenizer.eos_token_id
                    # 先頭が <BOS> <PAD> ... の場合は <BOS> <EOS> <PAD> ... に変える
                    if ids_chunk[1] == self.tokenizer.pad_token_id:
                        ids_chunk[1] = self.tokenizer.eos_token_id

                    iids_list.append(ids_chunk)

            input_ids = torch.stack(iids_list)  # 3,77
        return input_ids

    def register_image(self, info: ImageInfo, subset: BaseSubset):
        self.image_data[info.image_key] = info
        self.image_to_subset[info.image_key] = subset

    def make_buckets(self):
        """
        bucketingを行わない場合も呼び出し必須(ひとつだけbucketを作る)
        min_size and max_size are ignored when enable_bucket is False
        """
        print("loading image sizes.")
        for info in tqdm(self.image_data.values()):
            if info.image_size is None:
                info.image_size = self.get_image_size(info.absolute_path)

        if self.enable_bucket:
            print("make buckets")
        else:
            print("prepare dataset")

        # bucketを作成し、画像をbucketに振り分ける
        if self.enable_bucket:
            if self.bucket_manager is None:  # fine tuningの場合でmetadataに定義がある場合は、すでに初期化済み
                self.bucket_manager = BucketManager(
                    self.bucket_no_upscale,
                    (self.width, self.height),
                    self.min_bucket_reso,
                    self.max_bucket_reso,
                    self.bucket_reso_steps,
                )
                if not self.bucket_no_upscale:
                    self.bucket_manager.make_buckets()
                else:
                    print(
                        "min_bucket_reso and max_bucket_reso are ignored if bucket_no_upscale is set, because bucket reso is defined by image size automatically / bucket_no_upscaleが指定された場合は、bucketの解像度は画像サイズから自動計算されるため、min_bucket_resoとmax_bucket_resoは無視されます"
                    )

            img_ar_errors = []
            for image_info in self.image_data.values():
                image_width, image_height = image_info.image_size
                image_info.bucket_reso, image_info.resized_size, ar_error = self.bucket_manager.select_bucket(
                    image_width, image_height
                )

                # print(image_info.image_key, image_info.bucket_reso)
                img_ar_errors.append(abs(ar_error))

            self.bucket_manager.sort()
        else:
            self.bucket_manager = BucketManager(False, (self.width, self.height), None, None, None)
            self.bucket_manager.set_predefined_resos([(self.width, self.height)])  # ひとつの固定サイズbucketのみ
            for image_info in self.image_data.values():
                image_width, image_height = image_info.image_size
                image_info.bucket_reso, image_info.resized_size, _ = self.bucket_manager.select_bucket(image_width, image_height)

        for image_info in self.image_data.values():
            for _ in range(image_info.num_repeats):
                self.bucket_manager.add_image(image_info.bucket_reso, image_info.image_key)

        # bucket情報を表示、格納する
        if self.enable_bucket:
            self.bucket_info = {"buckets": {}}
            print("number of images (including repeats) / 各bucketの画像枚数(繰り返し回数を含む)")
            for i, (reso, bucket) in enumerate(zip(self.bucket_manager.resos, self.bucket_manager.buckets)):
                count = len(bucket)
                if count > 0:
                    self.bucket_info["buckets"][i] = {"resolution": reso, "count": len(bucket)}
                    print(f"bucket {i}: resolution {reso}, count: {len(bucket)}")

            img_ar_errors = np.array(img_ar_errors)
            mean_img_ar_error = np.mean(np.abs(img_ar_errors))
            self.bucket_info["mean_img_ar_error"] = mean_img_ar_error
            print(f"mean ar error (without repeats): {mean_img_ar_error}")

        # データ参照用indexを作る。このindexはdatasetのshuffleに用いられる
        self.buckets_indices: List(BucketBatchIndex) = []
        for bucket_index, bucket in enumerate(self.bucket_manager.buckets):
            batch_count = int(math.ceil(len(bucket) / self.batch_size))
            for batch_index in range(batch_count):
                self.buckets_indices.append(BucketBatchIndex(bucket_index, self.batch_size, batch_index))

            # ↓以下はbucketごとのbatch件数があまりにも増えて混乱を招くので元に戻す
            #  学習時はステップ数がランダムなので、同一画像が同一batch内にあってもそれほど悪影響はないであろう、と考えられる
            #
            # # bucketが細分化されることにより、ひとつのbucketに一種類の画像のみというケースが増え、つまりそれは
            # # ひとつのbatchが同じ画像で占められることになるので、さすがに良くないであろう
            # # そのためバッチサイズを画像種類までに制限する
            # # ただそれでも同一画像が同一バッチに含まれる可能性はあるので、繰り返し回数が少ないほうがshuffleの品質は良くなることは間違いない?
            # # TO DO 正則化画像をepochまたがりで利用する仕組み
            # num_of_image_types = len(set(bucket))
            # bucket_batch_size = min(self.batch_size, num_of_image_types)
            # batch_count = int(math.ceil(len(bucket) / bucket_batch_size))
            # # print(bucket_index, num_of_image_types, bucket_batch_size, batch_count)
            # for batch_index in range(batch_count):
            #   self.buckets_indices.append(BucketBatchIndex(bucket_index, bucket_batch_size, batch_index))
            # ↑ここまで

        self.shuffle_buckets()
        self._length = len(self.buckets_indices)

    def shuffle_buckets(self):
        # set random seed for this epoch
        random.seed(self.seed + self.current_epoch)

        random.shuffle(self.buckets_indices)
        self.bucket_manager.shuffle()

    def load_image(self, image_path):
        image = Image.open(image_path)
        if not image.mode == "RGB":
            image = image.convert("RGB")
        img = np.array(image, np.uint8)
        return img

    def trim_and_resize_if_required(self, subset: BaseSubset, image, reso, resized_size):
        image_height, image_width = image.shape[0:2]

        if image_width != resized_size[0] or image_height != resized_size[1]:
            # リサイズする
            image = cv2.resize(image, resized_size, interpolation=cv2.INTER_AREA)  # INTER_AREAでやりたいのでcv2でリサイズ

        image_height, image_width = image.shape[0:2]
        if image_width > reso[0]:
            trim_size = image_width - reso[0]
            p = trim_size // 2 if not subset.random_crop else random.randint(0, trim_size)
            # print("w", trim_size, p)
            image = image[:, p : p + reso[0]]
        if image_height > reso[1]:
            trim_size = image_height - reso[1]
            p = trim_size // 2 if not subset.random_crop else random.randint(0, trim_size)
            # print("h", trim_size, p)
            image = image[p : p + reso[1]]

        assert (
            image.shape[0] == reso[1] and image.shape[1] == reso[0]
        ), f"internal error, illegal trimmed size: {image.shape}, {reso}"
        return image

    def is_latent_cacheable(self):
        return all([not subset.color_aug and not subset.random_crop for subset in self.subsets])

    def cache_latents(self, vae, vae_batch_size=1):
        # ちょっと速くした
        print("caching latents.")

        image_infos = list(self.image_data.values())

        # sort by resolution
        image_infos.sort(key=lambda info: info.bucket_reso[0] * info.bucket_reso[1])

        # split by resolution
        batches = []
        batch = []
        for info in image_infos:
            subset = self.image_to_subset[info.image_key]

            if info.latents_npz is not None:
                info.latents = self.load_latents_from_npz(info, False)
                info.latents = torch.FloatTensor(info.latents)
                info.latents_flipped = self.load_latents_from_npz(info, True)  # might be None
                if info.latents_flipped is not None:
                    info.latents_flipped = torch.FloatTensor(info.latents_flipped)
                continue

            # if last member of batch has different resolution, flush the batch
            if len(batch) > 0 and batch[-1].bucket_reso != info.bucket_reso:
                batches.append(batch)
                batch = []

            batch.append(info)

            # if number of data in batch is enough, flush the batch
            if len(batch) >= vae_batch_size:
                batches.append(batch)
                batch = []

        if len(batch) > 0:
            batches.append(batch)

        # iterate batches
        for batch in tqdm(batches, smoothing=1, total=len(batches)):
            images = []
            for info in batch:
                image = self.load_image(info.absolute_path)
                image = self.trim_and_resize_if_required(subset, image, info.bucket_reso, info.resized_size)
                image = self.image_transforms(image)
                images.append(image)

            img_tensors = torch.stack(images, dim=0)
            img_tensors = img_tensors.to(device=vae.device, dtype=vae.dtype)

            latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")
            for info, latent in zip(batch, latents):
                info.latents = latent

            if subset.flip_aug:
                img_tensors = torch.flip(img_tensors, dims=[3])
                latents = vae.encode(img_tensors).latent_dist.sample().to("cpu")
                for info, latent in zip(batch, latents):
                    info.latents_flipped = latent

    def get_image_size(self, image_path):
        image = Image.open(image_path)
        return image.size

    def load_image_with_face_info(self, subset: BaseSubset, image_path: str):
        img = self.load_image(image_path)

        face_cx = face_cy = face_w = face_h = 0
        if subset.face_crop_aug_range is not None:
            tokens = os.path.splitext(os.path.basename(image_path))[0].split("_")
            if len(tokens) >= 5:
                face_cx = int(tokens[-4])
                face_cy = int(tokens[-3])
                face_w = int(tokens[-2])
                face_h = int(tokens[-1])

        return img, face_cx, face_cy, face_w, face_h

    # いい感じに切り出す
    def crop_target(self, subset: BaseSubset, image, face_cx, face_cy, face_w, face_h):
        height, width = image.shape[0:2]
        if height == self.height and width == self.width:
            return image

        # 画像サイズはsizeより大きいのでリサイズする
        face_size = max(face_w, face_h)
        min_scale = max(self.height / height, self.width / width)  # 画像がモデル入力サイズぴったりになる倍率(最小の倍率)
        min_scale = min(1.0, max(min_scale, self.size / (face_size * subset.face_crop_aug_range[1])))  # 指定した顔最小サイズ
        max_scale = min(1.0, max(min_scale, self.size / (face_size * subset.face_crop_aug_range[0])))  # 指定した顔最大サイズ
        if min_scale >= max_scale:  # range指定がmin==max
            scale = min_scale
        else:
            scale = random.uniform(min_scale, max_scale)

        nh = int(height * scale + 0.5)
        nw = int(width * scale + 0.5)
        assert nh >= self.height and nw >= self.width, f"internal error. small scale {scale}, {width}*{height}"
        image = cv2.resize(image, (nw, nh), interpolation=cv2.INTER_AREA)
        face_cx = int(face_cx * scale + 0.5)
        face_cy = int(face_cy * scale + 0.5)
        height, width = nh, nw

        # 顔を中心として448*640とかへ切り出す
        for axis, (target_size, length, face_p) in enumerate(zip((self.height, self.width), (height, width), (face_cy, face_cx))):
            p1 = face_p - target_size // 2  # 顔を中心に持ってくるための切り出し位置

            if subset.random_crop:
                # 背景も含めるために顔を中心に置く確率を高めつつずらす
                range = max(length - face_p, face_p)  # 画像の端から顔中心までの距離の長いほう
                p1 = p1 + (random.randint(0, range) + random.randint(0, range)) - range  # -range ~ +range までのいい感じの乱数
            else:
                # range指定があるときのみ、すこしだけランダムに(わりと適当)
                if subset.face_crop_aug_range[0] != subset.face_crop_aug_range[1]:
                    if face_size > self.size // 10 and face_size >= 40:
                        p1 = p1 + random.randint(-face_size // 20, +face_size // 20)

            p1 = max(0, min(p1, length - target_size))

            if axis == 0:
                image = image[p1 : p1 + target_size, :]
            else:
                image = image[:, p1 : p1 + target_size]

        return image

    def load_latents_from_npz(self, image_info: ImageInfo, flipped):
        npz_file = image_info.latents_npz_flipped if flipped else image_info.latents_npz
        if npz_file is None:
            return None
        return np.load(npz_file)["arr_0"]

    def __len__(self):
        return self._length

    def __getitem__(self, index):
        bucket = self.bucket_manager.buckets[self.buckets_indices[index].bucket_index]
        bucket_batch_size = self.buckets_indices[index].bucket_batch_size
        image_index = self.buckets_indices[index].batch_index * bucket_batch_size

        loss_weights = []
        captions = []
        input_ids_list = []
        latents_list = []
        images = []

        for image_key in bucket[image_index : image_index + bucket_batch_size]:
            image_info = self.image_data[image_key]
            subset = self.image_to_subset[image_key]
            loss_weights.append(self.prior_loss_weight if image_info.is_reg else 1.0)

            # image/latentsを処理する
            if image_info.latents is not None:
                latents = image_info.latents if not subset.flip_aug or random.random() < 0.5 else image_info.latents_flipped
                image = None
            elif image_info.latents_npz is not None:
                latents = self.load_latents_from_npz(image_info, subset.flip_aug and random.random() >= 0.5)
                latents = torch.FloatTensor(latents)
                image = None
            else:
                # 画像を読み込み、必要ならcropする
                img, face_cx, face_cy, face_w, face_h = self.load_image_with_face_info(subset, image_info.absolute_path)
                im_h, im_w = img.shape[0:2]

                if self.enable_bucket:
                    img = self.trim_and_resize_if_required(subset, img, image_info.bucket_reso, image_info.resized_size)
                else:
                    if face_cx > 0:  # 顔位置情報あり
                        img = self.crop_target(subset, img, face_cx, face_cy, face_w, face_h)
                    elif im_h > self.height or im_w > self.width:
                        assert (
                            subset.random_crop
                        ), f"image too large, but cropping and bucketing are disabled / 画像サイズが大きいのでface_crop_aug_rangeかrandom_crop、またはbucketを有効にしてください: {image_info.absolute_path}"
                        if im_h > self.height:
                            p = random.randint(0, im_h - self.height)
                            img = img[p : p + self.height]
                        if im_w > self.width:
                            p = random.randint(0, im_w - self.width)
                            img = img[:, p : p + self.width]

                    im_h, im_w = img.shape[0:2]
                    assert (
                        im_h == self.height and im_w == self.width
                    ), f"image size is small / 画像サイズが小さいようです: {image_info.absolute_path}"

                # augmentation
                aug = self.aug_helper.get_augmentor(subset.color_aug, subset.flip_aug)
                if aug is not None:
                    img = aug(image=img)["image"]

                latents = None
                image = self.image_transforms(img)  # -1.0~1.0のtorch.Tensorになる

            images.append(image)
            latents_list.append(latents)

            caption = self.process_caption(subset, image_info.caption)
            if self.XTI_layers:
                caption_layer = []
                for layer in self.XTI_layers:
                    token_strings_from = " ".join(self.token_strings)
                    token_strings_to = " ".join([f"{x}_{layer}" for x in self.token_strings])
                    caption_ = caption.replace(token_strings_from, token_strings_to)
                    caption_layer.append(caption_)
                captions.append(caption_layer)
            else:
                captions.append(caption)
            if not self.token_padding_disabled:  # this option might be omitted in future
                if self.XTI_layers:
                    token_caption = self.get_input_ids(caption_layer)
                else:
                    token_caption = self.get_input_ids(caption)
                input_ids_list.append(token_caption)

        example = {}
        example["loss_weights"] = torch.FloatTensor(loss_weights)

        if self.token_padding_disabled:
            # padding=True means pad in the batch
            example["input_ids"] = self.tokenizer(captions, padding=True, truncation=True, return_tensors="pt").input_ids
        else:
            # batch processing seems to be good
            example["input_ids"] = torch.stack(input_ids_list)

        if images[0] is not None:
            images = torch.stack(images)
            images = images.to(memory_format=torch.contiguous_format).float()
        else:
            images = None
        example["images"] = images

        example["latents"] = torch.stack(latents_list) if latents_list[0] is not None else None

        if self.debug_dataset:
            example["image_keys"] = bucket[image_index : image_index + self.batch_size]
            example["captions"] = captions
        return example


class DreamBoothDataset(BaseDataset):
    def __init__(
        self,
        subsets: Sequence[DreamBoothSubset],
        batch_size: int,
        tokenizer,
        max_token_length,
        resolution,
        enable_bucket: bool,
        min_bucket_reso: int,
        max_bucket_reso: int,
        bucket_reso_steps: int,
        bucket_no_upscale: bool,
        prior_loss_weight: float,
        debug_dataset,
    ) -> None:
        super().__init__(tokenizer, max_token_length, resolution, debug_dataset)

        assert resolution is not None, f"resolution is required / resolution(解像度)指定は必須です"

        self.batch_size = batch_size
        self.size = min(self.width, self.height)  # 短いほう
        self.prior_loss_weight = prior_loss_weight
        self.latents_cache = None

        self.enable_bucket = enable_bucket
        if self.enable_bucket:
            assert (
                min(resolution) >= min_bucket_reso
            ), f"min_bucket_reso must be equal or less than resolution / min_bucket_resoは最小解像度より大きくできません。解像度を大きくするかmin_bucket_resoを小さくしてください"
            assert (
                max(resolution) <= max_bucket_reso
            ), f"max_bucket_reso must be equal or greater than resolution / max_bucket_resoは最大解像度より小さくできません。解像度を小さくするかmin_bucket_resoを大きくしてください"
            self.min_bucket_reso = min_bucket_reso
            self.max_bucket_reso = max_bucket_reso
            self.bucket_reso_steps = bucket_reso_steps
            self.bucket_no_upscale = bucket_no_upscale
        else:
            self.min_bucket_reso = None
            self.max_bucket_reso = None
            self.bucket_reso_steps = None  # この情報は使われない
            self.bucket_no_upscale = False

        def read_caption(img_path, caption_extension):
            # captionの候補ファイル名を作る
            base_name = os.path.splitext(img_path)[0]
            base_name_face_det = base_name
            tokens = base_name.split("_")
            if len(tokens) >= 5:
                base_name_face_det = "_".join(tokens[:-4])
            cap_paths = [base_name + caption_extension, base_name_face_det + caption_extension]

            caption = None
            for cap_path in cap_paths:
                if os.path.isfile(cap_path):
                    with open(cap_path, "rt", encoding="utf-8") as f:
                        try:
                            lines = f.readlines()
                        except UnicodeDecodeError as e:
                            print(f"illegal char in file (not UTF-8) / ファイルにUTF-8以外の文字があります: {cap_path}")
                            raise e
                        assert len(lines) > 0, f"caption file is empty / キャプションファイルが空です: {cap_path}"
                        caption = lines[0].strip()
                    break
            return caption

        def load_dreambooth_dir(subset: DreamBoothSubset):
            if not os.path.isdir(subset.image_dir):
                print(f"not directory: {subset.image_dir}")
                return [], []

            img_paths = glob_images(subset.image_dir, "*")
            print(f"found directory {subset.image_dir} contains {len(img_paths)} image files")

            # 画像ファイルごとにプロンプトを読み込み、もしあればそちらを使う
            captions = []
            for img_path in img_paths:
                cap_for_img = read_caption(img_path, subset.caption_extension)
                if cap_for_img is None and subset.class_tokens is None:
                    print(f"neither caption file nor class tokens are found. use empty caption for {img_path}")
                    captions.append("")
                else:
                    captions.append(subset.class_tokens if cap_for_img is None else cap_for_img)

            self.set_tag_frequency(os.path.basename(subset.image_dir), captions)  # タグ頻度を記録

            return img_paths, captions

        print("prepare images.")
        num_train_images = 0
        num_reg_images = 0
        reg_infos: List[ImageInfo] = []
        for subset in subsets:
            if subset.num_repeats < 1:
                print(
                    f"ignore subset with image_dir='{subset.image_dir}': num_repeats is less than 1 / num_repeatsが1を下回っているためサブセットを無視します: {subset.num_repeats}"
                )
                continue

            if subset in self.subsets:
                print(
                    f"ignore duplicated subset with image_dir='{subset.image_dir}': use the first one / 既にサブセットが登録されているため、重複した後発のサブセットを無視します"
                )
                continue

            img_paths, captions = load_dreambooth_dir(subset)
            if len(img_paths) < 1:
                print(f"ignore subset with image_dir='{subset.image_dir}': no images found / 画像が見つからないためサブセットを無視します")
                continue

            if subset.is_reg:
                num_reg_images += subset.num_repeats * len(img_paths)
            else:
                num_train_images += subset.num_repeats * len(img_paths)

            for img_path, caption in zip(img_paths, captions):
                info = ImageInfo(img_path, subset.num_repeats, caption, subset.is_reg, img_path)
                if subset.is_reg:
                    reg_infos.append(info)
                else:
                    self.register_image(info, subset)

            subset.img_count = len(img_paths)
            self.subsets.append(subset)

        print(f"{num_train_images} train images with repeating.")
        self.num_train_images = num_train_images

        print(f"{num_reg_images} reg images.")
        if num_train_images < num_reg_images:
            print("some of reg images are not used / 正則化画像の数が多いので、一部使用されない正則化画像があります")

        if num_reg_images == 0:
            print("no regularization images / 正則化画像が見つかりませんでした")
        else:
            # num_repeatsを計算する:どうせ大した数ではないのでループで処理する
            n = 0
            first_loop = True
            while n < num_train_images:
                for info in reg_infos:
                    if first_loop:
                        self.register_image(info, subset)
                        n += info.num_repeats
                    else:
                        info.num_repeats += 1  # rewrite registered info
                        n += 1
                    if n >= num_train_images:
                        break
                first_loop = False

        self.num_reg_images = num_reg_images


class FineTuningDataset(BaseDataset):
    def __init__(
        self,
        subsets: Sequence[FineTuningSubset],
        batch_size: int,
        tokenizer,
        max_token_length,
        resolution,
        enable_bucket: bool,
        min_bucket_reso: int,
        max_bucket_reso: int,
        bucket_reso_steps: int,
        bucket_no_upscale: bool,
        debug_dataset,
    ) -> None:
        super().__init__(tokenizer, max_token_length, resolution, debug_dataset)

        self.batch_size = batch_size

        self.num_train_images = 0
        self.num_reg_images = 0

        for subset in subsets:
            if subset.num_repeats < 1:
                print(
                    f"ignore subset with metadata_file='{subset.metadata_file}': num_repeats is less than 1 / num_repeatsが1を下回っているためサブセットを無視します: {subset.num_repeats}"
                )
                continue

            if subset in self.subsets:
                print(
                    f"ignore duplicated subset with metadata_file='{subset.metadata_file}': use the first one / 既にサブセットが登録されているため、重複した後発のサブセットを無視します"
                )
                continue

            # メタデータを読み込む
            if os.path.exists(subset.metadata_file):
                print(f"loading existing metadata: {subset.metadata_file}")
                with open(subset.metadata_file, "rt", encoding="utf-8") as f:
                    metadata = json.load(f)
            else:
                raise ValueError(f"no metadata / メタデータファイルがありません: {subset.metadata_file}")

            if len(metadata) < 1:
                print(f"ignore subset with '{subset.metadata_file}': no image entries found / 画像に関するデータが見つからないためサブセットを無視します")
                continue

            tags_list = []
            for image_key, img_md in metadata.items():
                # path情報を作る
                if os.path.exists(image_key):
                    abs_path = image_key
                elif os.path.exists(os.path.splitext(image_key)[0] + ".npz"):
                    abs_path = os.path.splitext(image_key)[0] + ".npz"
                else:
                    npz_path = os.path.join(subset.image_dir, image_key + ".npz")
                    if os.path.exists(npz_path):
                        abs_path = npz_path
                    else:
                        # わりといい加減だがいい方法が思いつかん
                        abs_path = glob_images(subset.image_dir, image_key)
                        assert len(abs_path) >= 1, f"no image / 画像がありません: {image_key}"
                        abs_path = abs_path[0]

                caption = img_md.get("caption")
                tags = img_md.get("tags")
                if caption is None:
                    caption = tags
                elif tags is not None and len(tags) > 0:
                    caption = caption + ", " + tags
                    tags_list.append(tags)

                if caption is None:
                    caption = ""

                image_info = ImageInfo(image_key, subset.num_repeats, caption, False, abs_path)
                image_info.image_size = img_md.get("train_resolution")

                if not subset.color_aug and not subset.random_crop:
                    # if npz exists, use them
                    image_info.latents_npz, image_info.latents_npz_flipped = self.image_key_to_npz_file(subset, image_key)

                self.register_image(image_info, subset)

            self.num_train_images += len(metadata) * subset.num_repeats

            # TODO do not record tag freq when no tag
            self.set_tag_frequency(os.path.basename(subset.metadata_file), tags_list)
            subset.img_count = len(metadata)
            self.subsets.append(subset)

        # check existence of all npz files
        use_npz_latents = all([not (subset.color_aug or subset.random_crop) for subset in self.subsets])
        if use_npz_latents:
            flip_aug_in_subset = False
            npz_any = False
            npz_all = True

            for image_info in self.image_data.values():
                subset = self.image_to_subset[image_info.image_key]

                has_npz = image_info.latents_npz is not None
                npz_any = npz_any or has_npz

                if subset.flip_aug:
                    has_npz = has_npz and image_info.latents_npz_flipped is not None
                    flip_aug_in_subset = True
                npz_all = npz_all and has_npz

                if npz_any and not npz_all:
                    break

            if not npz_any:
                use_npz_latents = False
                print(f"npz file does not exist. ignore npz files / npzファイルが見つからないためnpzファイルを無視します")
            elif not npz_all:
                use_npz_latents = False
                print(f"some of npz file does not exist. ignore npz files / いくつかのnpzファイルが見つからないためnpzファイルを無視します")
                if flip_aug_in_subset:
                    print("maybe no flipped files / 反転されたnpzファイルがないのかもしれません")
        # else:
        #   print("npz files are not used with color_aug and/or random_crop / color_augまたはrandom_cropが指定されているためnpzファイルは使用されません")

        # check min/max bucket size
        sizes = set()
        resos = set()
        for image_info in self.image_data.values():
            if image_info.image_size is None:
                sizes = None  # not calculated
                break
            sizes.add(image_info.image_size[0])
            sizes.add(image_info.image_size[1])
            resos.add(tuple(image_info.image_size))

        if sizes is None:
            if use_npz_latents:
                use_npz_latents = False
                print(f"npz files exist, but no bucket info in metadata. ignore npz files / メタデータにbucket情報がないためnpzファイルを無視します")

            assert (
                resolution is not None
            ), "if metadata doesn't have bucket info, resolution is required / メタデータにbucket情報がない場合はresolutionを指定してください"

            self.enable_bucket = enable_bucket
            if self.enable_bucket:
                self.min_bucket_reso = min_bucket_reso
                self.max_bucket_reso = max_bucket_reso
                self.bucket_reso_steps = bucket_reso_steps
                self.bucket_no_upscale = bucket_no_upscale
        else:
            if not enable_bucket:
                print("metadata has bucket info, enable bucketing / メタデータにbucket情報があるためbucketを有効にします")
            print("using bucket info in metadata / メタデータ内のbucket情報を使います")
            self.enable_bucket = True

            assert (
                not bucket_no_upscale
            ), "if metadata has bucket info, bucket reso is precalculated, so bucket_no_upscale cannot be used / メタデータ内にbucket情報がある場合はbucketの解像度は計算済みのため、bucket_no_upscaleは使えません"

            # bucket情報を初期化しておく、make_bucketsで再作成しない
            self.bucket_manager = BucketManager(False, None, None, None, None)
            self.bucket_manager.set_predefined_resos(resos)

        # npz情報をきれいにしておく
        if not use_npz_latents:
            for image_info in self.image_data.values():
                image_info.latents_npz = image_info.latents_npz_flipped = None

    def image_key_to_npz_file(self, subset: FineTuningSubset, image_key):
        base_name = os.path.splitext(image_key)[0]
        npz_file_norm = base_name + ".npz"

        if os.path.exists(npz_file_norm):
            # image_key is full path
            npz_file_flip = base_name + "_flip.npz"
            if not os.path.exists(npz_file_flip):
                npz_file_flip = None
            return npz_file_norm, npz_file_flip

        # if not full path, check image_dir. if image_dir is None, return None
        if subset.image_dir is None:
            return None, None

        # image_key is relative path
        npz_file_norm = os.path.join(subset.image_dir, image_key + ".npz")
        npz_file_flip = os.path.join(subset.image_dir, image_key + "_flip.npz")

        if not os.path.exists(npz_file_norm):
            npz_file_norm = None
            npz_file_flip = None
        elif not os.path.exists(npz_file_flip):
            npz_file_flip = None

        return npz_file_norm, npz_file_flip


# behave as Dataset mock
class DatasetGroup(torch.utils.data.ConcatDataset):
    def __init__(self, datasets: Sequence[Union[DreamBoothDataset, FineTuningDataset]]):
        self.datasets: List[Union[DreamBoothDataset, FineTuningDataset]]

        super().__init__(datasets)

        self.image_data = {}
        self.num_train_images = 0
        self.num_reg_images = 0

        # simply concat together
        # TODO: handling image_data key duplication among dataset
        #   In practical, this is not the big issue because image_data is accessed from outside of dataset only for debug_dataset.
        for dataset in datasets:
            self.image_data.update(dataset.image_data)
            self.num_train_images += dataset.num_train_images
            self.num_reg_images += dataset.num_reg_images

    def add_replacement(self, str_from, str_to):
        for dataset in self.datasets:
            dataset.add_replacement(str_from, str_to)

    # def make_buckets(self):
    #   for dataset in self.datasets:
    #     dataset.make_buckets()

    def enable_XTI(self, *args, **kwargs):
        for dataset in self.datasets:
            dataset.enable_XTI(*args, **kwargs)

    def cache_latents(self, vae, vae_batch_size=1):
        for i, dataset in enumerate(self.datasets):
            print(f"[Dataset {i}]")
            dataset.cache_latents(vae, vae_batch_size)

    def is_latent_cacheable(self) -> bool:
        return all([dataset.is_latent_cacheable() for dataset in self.datasets])

    def set_current_epoch(self, epoch):
        for dataset in self.datasets:
            dataset.set_current_epoch(epoch)

    def set_current_step(self, step):
        for dataset in self.datasets:
            dataset.set_current_step(step)

    def set_max_train_steps(self, max_train_steps):
        for dataset in self.datasets:
            dataset.set_max_train_steps(max_train_steps)

    def disable_token_padding(self):
        for dataset in self.datasets:
            dataset.disable_token_padding()


def debug_dataset(train_dataset, show_input_ids=False):
    print(f"Total dataset length (steps) / データセットの長さ(ステップ数): {len(train_dataset)}")
    print("`S` for next step, `E` for next epoch no. , Escape for exit. / Sキーで次のステップ、Eキーで次のエポック、Escキーで中断、終了します")

    epoch = 1
    while True:
        print(f"epoch: {epoch}")

        steps = (epoch - 1) * len(train_dataset) + 1
        indices = list(range(len(train_dataset)))
        random.shuffle(indices)

        k = 0
        for i, idx in enumerate(indices):
            train_dataset.set_current_epoch(epoch)
            train_dataset.set_current_step(steps)
            print(f"steps: {steps} ({i + 1}/{len(train_dataset)})")

            example = train_dataset[idx]
            if example["latents"] is not None:
                print(f"sample has latents from npz file: {example['latents'].size()}")
            for j, (ik, cap, lw, iid) in enumerate(
                zip(example["image_keys"], example["captions"], example["loss_weights"], example["input_ids"])
            ):
                print(f'{ik}, size: {train_dataset.image_data[ik].image_size}, loss weight: {lw}, caption: "{cap}"')
                if show_input_ids:
                    print(f"input ids: {iid}")
                if example["images"] is not None:
                    im = example["images"][j]
                    print(f"image size: {im.size()}")
                    im = ((im.numpy() + 1.0) * 127.5).astype(np.uint8)
                    im = np.transpose(im, (1, 2, 0))  # c,H,W -> H,W,c
                    im = im[:, :, ::-1]  # RGB -> BGR (OpenCV)
                    if os.name == "nt":  # only windows
                        cv2.imshow("img", im)
                    k = cv2.waitKey()
                    cv2.destroyAllWindows()
                    if k == 27 or k == ord("s") or k == ord("e"):
                        break
            steps += 1

            if k == ord("e"):
                break
            if k == 27 or (example["images"] is None and i >= 8):
                k = 27
                break
        if k == 27:
            break

        epoch += 1


def glob_images(directory, base="*"):
    img_paths = []
    for ext in IMAGE_EXTENSIONS:
        if base == "*":
            img_paths.extend(glob.glob(os.path.join(glob.escape(directory), base + ext)))
        else:
            img_paths.extend(glob.glob(glob.escape(os.path.join(directory, base + ext))))
    img_paths = list(set(img_paths))  # 重複を排除
    img_paths.sort()
    return img_paths


def glob_images_pathlib(dir_path, recursive):
    image_paths = []
    if recursive:
        for ext in IMAGE_EXTENSIONS:
            image_paths += list(dir_path.rglob("*" + ext))
    else:
        for ext in IMAGE_EXTENSIONS:
            image_paths += list(dir_path.glob("*" + ext))
    image_paths = list(set(image_paths))  # 重複を排除
    image_paths.sort()
    return image_paths


# endregion


# region モジュール入れ替え部
"""
高速化のためのモジュール入れ替え
"""

# FlashAttentionを使うCrossAttention
# based on https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/memory_efficient_attention_pytorch/flash_attention.py
# LICENSE MIT https://github.com/lucidrains/memory-efficient-attention-pytorch/blob/main/LICENSE

# constants

EPSILON = 1e-6

# helper functions


def exists(val):
    return val is not None


def default(val, d):
    return val if exists(val) else d


def model_hash(filename):
    """Old model hash used by stable-diffusion-webui"""
    try:
        with open(filename, "rb") as file:
            m = hashlib.sha256()

            file.seek(0x100000)
            m.update(file.read(0x10000))
            return m.hexdigest()[0:8]
    except FileNotFoundError:
        return "NOFILE"
    except IsADirectoryError:  # Linux?
        return "IsADirectory"
    except PermissionError:  # Windows
        return "IsADirectory"


def calculate_sha256(filename):
    """New model hash used by stable-diffusion-webui"""
    try:
        hash_sha256 = hashlib.sha256()
        blksize = 1024 * 1024

        with open(filename, "rb") as f:
            for chunk in iter(lambda: f.read(blksize), b""):
                hash_sha256.update(chunk)

        return hash_sha256.hexdigest()
    except FileNotFoundError:
        return "NOFILE"
    except IsADirectoryError:  # Linux?
        return "IsADirectory"
    except PermissionError:  # Windows
        return "IsADirectory"


def precalculate_safetensors_hashes(tensors, metadata):
    """Precalculate the model hashes needed by sd-webui-additional-networks to
    save time on indexing the model later."""

    # Because writing user metadata to the file can change the result of
    # sd_models.model_hash(), only retain the training metadata for purposes of
    # calculating the hash, as they are meant to be immutable
    metadata = {k: v for k, v in metadata.items() if k.startswith("ss_")}

    bytes = safetensors.torch.save(tensors, metadata)
    b = BytesIO(bytes)

    model_hash = addnet_hash_safetensors(b)
    legacy_hash = addnet_hash_legacy(b)
    return model_hash, legacy_hash


def addnet_hash_legacy(b):
    """Old model hash used by sd-webui-additional-networks for .safetensors format files"""
    m = hashlib.sha256()

    b.seek(0x100000)
    m.update(b.read(0x10000))
    return m.hexdigest()[0:8]


def addnet_hash_safetensors(b):
    """New model hash used by sd-webui-additional-networks for .safetensors format files"""
    hash_sha256 = hashlib.sha256()
    blksize = 1024 * 1024

    b.seek(0)
    header = b.read(8)
    n = int.from_bytes(header, "little")

    offset = n + 8
    b.seek(offset)
    for chunk in iter(lambda: b.read(blksize), b""):
        hash_sha256.update(chunk)

    return hash_sha256.hexdigest()


def get_git_revision_hash() -> str:
    try:
        return subprocess.check_output(["git", "rev-parse", "HEAD"], cwd=os.path.dirname(__file__)).decode("ascii").strip()
    except:
        return "(unknown)"


# flash attention forwards and backwards

# https://arxiv.org/abs/2205.14135


class FlashAttentionFunction(torch.autograd.function.Function):
    @staticmethod
    @torch.no_grad()
    def forward(ctx, q, k, v, mask, causal, q_bucket_size, k_bucket_size):
        """Algorithm 2 in the paper"""

        device = q.device
        dtype = q.dtype
        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        o = torch.zeros_like(q)
        all_row_sums = torch.zeros((*q.shape[:-1], 1), dtype=dtype, device=device)
        all_row_maxes = torch.full((*q.shape[:-1], 1), max_neg_value, dtype=dtype, device=device)

        scale = q.shape[-1] ** -0.5

        if not exists(mask):
            mask = (None,) * math.ceil(q.shape[-2] / q_bucket_size)
        else:
            mask = rearrange(mask, "b n -> b 1 1 n")
            mask = mask.split(q_bucket_size, dim=-1)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            mask,
            all_row_sums.split(q_bucket_size, dim=-2),
            all_row_maxes.split(q_bucket_size, dim=-2),
        )

        for ind, (qc, oc, row_mask, row_sums, row_maxes) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale

                if exists(row_mask):
                    attn_weights.masked_fill_(~row_mask, max_neg_value)

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
                        q_start_index - k_start_index + 1
                    )
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                block_row_maxes = attn_weights.amax(dim=-1, keepdims=True)
                attn_weights -= block_row_maxes
                exp_weights = torch.exp(attn_weights)

                if exists(row_mask):
                    exp_weights.masked_fill_(~row_mask, 0.0)

                block_row_sums = exp_weights.sum(dim=-1, keepdims=True).clamp(min=EPSILON)

                new_row_maxes = torch.maximum(block_row_maxes, row_maxes)

                exp_values = einsum("... i j, ... j d -> ... i d", exp_weights, vc)

                exp_row_max_diff = torch.exp(row_maxes - new_row_maxes)
                exp_block_row_max_diff = torch.exp(block_row_maxes - new_row_maxes)

                new_row_sums = exp_row_max_diff * row_sums + exp_block_row_max_diff * block_row_sums

                oc.mul_((row_sums / new_row_sums) * exp_row_max_diff).add_((exp_block_row_max_diff / new_row_sums) * exp_values)

                row_maxes.copy_(new_row_maxes)
                row_sums.copy_(new_row_sums)

        ctx.args = (causal, scale, mask, q_bucket_size, k_bucket_size)
        ctx.save_for_backward(q, k, v, o, all_row_sums, all_row_maxes)

        return o

    @staticmethod
    @torch.no_grad()
    def backward(ctx, do):
        """Algorithm 4 in the paper"""

        causal, scale, mask, q_bucket_size, k_bucket_size = ctx.args
        q, k, v, o, l, m = ctx.saved_tensors

        device = q.device

        max_neg_value = -torch.finfo(q.dtype).max
        qk_len_diff = max(k.shape[-2] - q.shape[-2], 0)

        dq = torch.zeros_like(q)
        dk = torch.zeros_like(k)
        dv = torch.zeros_like(v)

        row_splits = zip(
            q.split(q_bucket_size, dim=-2),
            o.split(q_bucket_size, dim=-2),
            do.split(q_bucket_size, dim=-2),
            mask,
            l.split(q_bucket_size, dim=-2),
            m.split(q_bucket_size, dim=-2),
            dq.split(q_bucket_size, dim=-2),
        )

        for ind, (qc, oc, doc, row_mask, lc, mc, dqc) in enumerate(row_splits):
            q_start_index = ind * q_bucket_size - qk_len_diff

            col_splits = zip(
                k.split(k_bucket_size, dim=-2),
                v.split(k_bucket_size, dim=-2),
                dk.split(k_bucket_size, dim=-2),
                dv.split(k_bucket_size, dim=-2),
            )

            for k_ind, (kc, vc, dkc, dvc) in enumerate(col_splits):
                k_start_index = k_ind * k_bucket_size

                attn_weights = einsum("... i d, ... j d -> ... i j", qc, kc) * scale

                if causal and q_start_index < (k_start_index + k_bucket_size - 1):
                    causal_mask = torch.ones((qc.shape[-2], kc.shape[-2]), dtype=torch.bool, device=device).triu(
                        q_start_index - k_start_index + 1
                    )
                    attn_weights.masked_fill_(causal_mask, max_neg_value)

                exp_attn_weights = torch.exp(attn_weights - mc)

                if exists(row_mask):
                    exp_attn_weights.masked_fill_(~row_mask, 0.0)

                p = exp_attn_weights / lc

                dv_chunk = einsum("... i j, ... i d -> ... j d", p, doc)
                dp = einsum("... i d, ... j d -> ... i j", doc, vc)

                D = (doc * oc).sum(dim=-1, keepdims=True)
                ds = p * scale * (dp - D)

                dq_chunk = einsum("... i j, ... j d -> ... i d", ds, kc)
                dk_chunk = einsum("... i j, ... i d -> ... j d", ds, qc)

                dqc.add_(dq_chunk)
                dkc.add_(dk_chunk)
                dvc.add_(dv_chunk)

        return dq, dk, dv, None, None, None, None


def replace_unet_modules(unet: diffusers.models.unet_2d_condition.UNet2DConditionModel, mem_eff_attn, xformers):
    if mem_eff_attn:
        replace_unet_cross_attn_to_memory_efficient()
    elif xformers:
        replace_unet_cross_attn_to_xformers()


def replace_unet_cross_attn_to_memory_efficient():
    print("Replace CrossAttention.forward to use FlashAttention (not xformers)")
    flash_func = FlashAttentionFunction

    def forward_flash_attn(self, x, context=None, mask=None):
        q_bucket_size = 512
        k_bucket_size = 1024

        h = self.heads
        q = self.to_q(x)

        context = context if context is not None else x
        context = context.to(x.dtype)

        if hasattr(self, "hypernetwork") and self.hypernetwork is not None:
            context_k, context_v = self.hypernetwork.forward(x, context)
            context_k = context_k.to(x.dtype)
            context_v = context_v.to(x.dtype)
        else:
            context_k = context
            context_v = context

        k = self.to_k(context_k)
        v = self.to_v(context_v)
        del context, x

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v))

        out = flash_func.apply(q, k, v, mask, False, q_bucket_size, k_bucket_size)

        out = rearrange(out, "b h n d -> b n (h d)")

        # diffusers 0.7.0~  わざわざ変えるなよ (;´Д`)
        out = self.to_out[0](out)
        out = self.to_out[1](out)
        return out

    diffusers.models.attention.CrossAttention.forward = forward_flash_attn


def replace_unet_cross_attn_to_xformers():
    print("Replace CrossAttention.forward to use xformers")
    try:
        import xformers.ops
    except ImportError:
        raise ImportError("No xformers / xformersがインストールされていないようです")

    def forward_xformers(self, x, context=None, mask=None):
        h = self.heads
        q_in = self.to_q(x)

        context = default(context, x)
        context = context.to(x.dtype)

        if hasattr(self, "hypernetwork") and self.hypernetwork is not None:
            context_k, context_v = self.hypernetwork.forward(x, context)
            context_k = context_k.to(x.dtype)
            context_v = context_v.to(x.dtype)
        else:
            context_k = context
            context_v = context

        k_in = self.to_k(context_k)
        v_in = self.to_v(context_v)

        q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b n h d", h=h), (q_in, k_in, v_in))
        del q_in, k_in, v_in

        q = q.contiguous()
        k = k.contiguous()
        v = v.contiguous()
        out = xformers.ops.memory_efficient_attention(q, k, v, attn_bias=None)  # 最適なのを選んでくれる

        out = rearrange(out, "b n h d -> b n (h d)", h=h)

        # diffusers 0.7.0~
        out = self.to_out[0](out)
        out = self.to_out[1](out)
        return out

    diffusers.models.attention.CrossAttention.forward = forward_xformers


# endregion


# region arguments


def add_sd_models_arguments(parser: argparse.ArgumentParser):
    # for pretrained models
    parser.add_argument("--v2", action="store_true", help="load Stable Diffusion v2.0 model / Stable Diffusion 2.0のモデルを読み込む")
    parser.add_argument(
        "--v_parameterization", action="store_true", help="enable v-parameterization training / v-parameterization学習を有効にする"
    )
    parser.add_argument(
        "--pretrained_model_name_or_path",
        type=str,
        default=None,
        help="pretrained model to train, directory to Diffusers model or StableDiffusion checkpoint / 学習元モデル、Diffusers形式モデルのディレクトリまたはStableDiffusionのckptファイル",
    )
    parser.add_argument(
        "--tokenizer_cache_dir",
        type=str,
        default=None,
        help="directory for caching Tokenizer (for offline training) / Tokenizerをキャッシュするディレクトリ(ネット接続なしでの学習のため)",
    )


def add_optimizer_arguments(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--optimizer_type",
        type=str,
        default="",
        help="Optimizer to use / オプティマイザの種類: AdamW (default), AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation, AdaFactor",
    )

    # backward compatibility
    parser.add_argument(
        "--use_8bit_adam",
        action="store_true",
        help="use 8bit AdamW optimizer (requires bitsandbytes) / 8bit Adamオプティマイザを使う(bitsandbytesのインストールが必要)",
    )
    parser.add_argument(
        "--use_lion_optimizer",
        action="store_true",
        help="use Lion optimizer (requires lion-pytorch) / Lionオプティマイザを使う( lion-pytorch のインストールが必要)",
    )

    parser.add_argument("--learning_rate", type=float, default=2.0e-6, help="learning rate / 学習率")
    parser.add_argument(
        "--max_grad_norm", default=1.0, type=float, help="Max gradient norm, 0 for no clipping / 勾配正規化の最大norm、0でclippingを行わない"
    )

    parser.add_argument(
        "--optimizer_args",
        type=str,
        default=None,
        nargs="*",
        help='additional arguments for optimizer (like "weight_decay=0.01 betas=0.9,0.999 ...") / オプティマイザの追加引数(例: "weight_decay=0.01 betas=0.9,0.999 ...")',
    )

    parser.add_argument("--lr_scheduler_type", type=str, default="", help="custom scheduler module / 使用するスケジューラ")
    parser.add_argument(
        "--lr_scheduler_args",
        type=str,
        default=None,
        nargs="*",
        help='additional arguments for scheduler (like "T_max=100") / スケジューラの追加引数(例: "T_max100")',
    )

    parser.add_argument(
        "--lr_scheduler",
        type=str,
        default="constant",
        help="scheduler to use for learning rate / 学習率のスケジューラ: linear, cosine, cosine_with_restarts, polynomial, constant (default), constant_with_warmup, adafactor",
    )
    parser.add_argument(
        "--lr_warmup_steps",
        type=int,
        default=0,
        help="Number of steps for the warmup in the lr scheduler (default is 0) / 学習率のスケジューラをウォームアップするステップ数(デフォルト0)",
    )
    parser.add_argument(
        "--lr_scheduler_num_cycles",
        type=int,
        default=1,
        help="Number of restarts for cosine scheduler with restarts / cosine with restartsスケジューラでのリスタート回数",
    )
    parser.add_argument(
        "--lr_scheduler_power",
        type=float,
        default=1,
        help="Polynomial power for polynomial scheduler / polynomialスケジューラでのpolynomial power",
    )


def add_training_arguments(parser: argparse.ArgumentParser, support_dreambooth: bool):
    parser.add_argument("--output_dir", type=str, default=None, help="directory to output trained model / 学習後のモデル出力先ディレクトリ")
    parser.add_argument("--output_name", type=str, default=None, help="base name of trained model file / 学習後のモデルの拡張子を除くファイル名")
    parser.add_argument(
        "--save_precision",
        type=str,
        default=None,
        choices=[None, "float", "fp16", "bf16"],
        help="precision in saving / 保存時に精度を変更して保存する",
    )
    parser.add_argument(
        "--save_every_n_epochs", type=int, default=None, help="save checkpoint every N epochs / 学習中のモデルを指定エポックごとに保存する"
    )
    parser.add_argument(
        "--save_n_epoch_ratio",
        type=int,
        default=None,
        help="save checkpoint N epoch ratio (for example 5 means save at least 5 files total) / 学習中のモデルを指定のエポック割合で保存する(たとえば5を指定すると最低5個のファイルが保存される)",
    )
    parser.add_argument("--save_last_n_epochs", type=int, default=None, help="save last N checkpoints / 最大Nエポック保存する")
    parser.add_argument(
        "--save_last_n_epochs_state",
        type=int,
        default=None,
        help="save last N checkpoints of state (overrides the value of --save_last_n_epochs)/ 最大Nエポックstateを保存する(--save_last_n_epochsの指定を上書きします)",
    )
    parser.add_argument(
        "--save_state",
        action="store_true",
        help="save training state additionally (including optimizer states etc.) / optimizerなど学習状態も含めたstateを追加で保存する",
    )
    parser.add_argument("--resume", type=str, default=None, help="saved state to resume training / 学習再開するモデルのstate")

    parser.add_argument("--train_batch_size", type=int, default=1, help="batch size for training / 学習時のバッチサイズ")
    parser.add_argument(
        "--max_token_length",
        type=int,
        default=None,
        choices=[None, 150, 225],
        help="max token length of text encoder (default for 75, 150 or 225) / text encoderのトークンの最大長(未指定で75、150または225が指定可)",
    )
    parser.add_argument(
        "--mem_eff_attn",
        action="store_true",
        help="use memory efficient attention for CrossAttention / CrossAttentionに省メモリ版attentionを使う",
    )
    parser.add_argument("--xformers", action="store_true", help="use xformers for CrossAttention / CrossAttentionにxformersを使う")
    parser.add_argument(
        "--vae", type=str, default=None, help="path to checkpoint of vae to replace / VAEを入れ替える場合、VAEのcheckpointファイルまたはディレクトリ"
    )

    parser.add_argument("--max_train_steps", type=int, default=1600, help="training steps / 学習ステップ数")
    parser.add_argument(
        "--max_train_epochs",
        type=int,
        default=None,
        help="training epochs (overrides max_train_steps) / 学習エポック数(max_train_stepsを上書きします)",
    )
    parser.add_argument(
        "--max_data_loader_n_workers",
        type=int,
        default=8,
        help="max num workers for DataLoader (lower is less main RAM usage, faster epoch start and slower data loading) / DataLoaderの最大プロセス数(小さい値ではメインメモリの使用量が減りエポック間の待ち時間が減りますが、データ読み込みは遅くなります)",
    )
    parser.add_argument(
        "--persistent_data_loader_workers",
        action="store_true",
        help="persistent DataLoader workers (useful for reduce time gap between epoch, but may use more memory) / DataLoader のワーカーを持続させる (エポック間の時間差を少なくするのに有効だが、より多くのメモリを消費する可能性がある)",
    )
    parser.add_argument("--seed", type=int, default=None, help="random seed for training / 学習時の乱数のseed")
    parser.add_argument(
        "--gradient_checkpointing", action="store_true", help="enable gradient checkpointing / grandient checkpointingを有効にする"
    )
    parser.add_argument(
        "--gradient_accumulation_steps",
        type=int,
        default=1,
        help="Number of updates steps to accumulate before performing a backward/update pass / 学習時に逆伝播をする前に勾配を合計するステップ数",
    )
    parser.add_argument(
        "--mixed_precision", type=str, default="no", choices=["no", "fp16", "bf16"], help="use mixed precision / 混合精度を使う場合、その精度"
    )
    parser.add_argument("--full_fp16", action="store_true", help="fp16 training including gradients / 勾配も含めてfp16で学習する")
    parser.add_argument(
        "--clip_skip",
        type=int,
        default=None,
        help="use output of nth layer from back of text encoder (n>=1) / text encoderの後ろからn番目の層の出力を用いる(nは1以上)",
    )
    parser.add_argument(
        "--logging_dir",
        type=str,
        default=None,
        help="enable logging and output TensorBoard log to this directory / ログ出力を有効にしてこのディレクトリにTensorBoard用のログを出力する",
    )
    parser.add_argument("--log_prefix", type=str, default=None, help="add prefix for each log directory / ログディレクトリ名の先頭に追加する文字列")
    parser.add_argument(
        "--noise_offset",
        type=float,
        default=None,
        help="enable noise offset with this value (if enabled, around 0.1 is recommended) / Noise offsetを有効にしてこの値を設定する(有効にする場合は0.1程度を推奨)",
    )
    parser.add_argument(
        "--lowram",
        action="store_true",
        help="enable low RAM optimization. e.g. load models to VRAM instead of RAM (for machines which have bigger VRAM than RAM such as Colab and Kaggle) / メインメモリが少ない環境向け最適化を有効にする。たとえばVRAMにモデルを読み込むなど(ColabやKaggleなどRAMに比べてVRAMが多い環境向け)",
    )

    parser.add_argument(
        "--sample_every_n_steps", type=int, default=None, help="generate sample images every N steps / 学習中のモデルで指定ステップごとにサンプル出力する"
    )
    parser.add_argument(
        "--sample_every_n_epochs",
        type=int,
        default=None,
        help="generate sample images every N epochs (overwrites n_steps) / 学習中のモデルで指定エポックごとにサンプル出力する(ステップ数指定を上書きします)",
    )
    parser.add_argument(
        "--sample_prompts", type=str, default=None, help="file for prompts to generate sample images / 学習中モデルのサンプル出力用プロンプトのファイル"
    )
    parser.add_argument(
        "--sample_sampler",
        type=str,
        default="ddim",
        choices=[
            "ddim",
            "pndm",
            "lms",
            "euler",
            "euler_a",
            "heun",
            "dpm_2",
            "dpm_2_a",
            "dpmsolver",
            "dpmsolver++",
            "dpmsingle",
            "k_lms",
            "k_euler",
            "k_euler_a",
            "k_dpm_2",
            "k_dpm_2_a",
        ],
        help=f"sampler (scheduler) type for sample images / サンプル出力時のサンプラー(スケジューラ)の種類",
    )

    parser.add_argument(
        "--config_file",
        type=str,
        default=None,
        help="using .toml instead of args to pass hyperparameter / ハイパーパラメータを引数ではなく.tomlファイルで渡す",
    )
    parser.add_argument(
        "--output_config", action="store_true", help="output command line args to given .toml file / 引数を.tomlファイルに出力する"
    )

    if support_dreambooth:
        # DreamBooth training
        parser.add_argument(
            "--prior_loss_weight", type=float, default=1.0, help="loss weight for regularization images / 正則化画像のlossの重み"
        )


def verify_training_args(args: argparse.Namespace):
    if args.v_parameterization and not args.v2:
        print("v_parameterization should be with v2 / v1でv_parameterizationを使用することは想定されていません")
    if args.v2 and args.clip_skip is not None:
        print("v2 with clip_skip will be unexpected / v2でclip_skipを使用することは想定されていません")


def add_dataset_arguments(
    parser: argparse.ArgumentParser, support_dreambooth: bool, support_caption: bool, support_caption_dropout: bool
):
    # dataset common
    parser.add_argument("--train_data_dir", type=str, default=None, help="directory for train images / 学習画像データのディレクトリ")
    parser.add_argument(
        "--shuffle_caption", action="store_true", help="shuffle comma-separated caption / コンマで区切られたcaptionの各要素をshuffleする"
    )
    parser.add_argument(
        "--caption_extension", type=str, default=".caption", help="extension of caption files / 読み込むcaptionファイルの拡張子"
    )
    parser.add_argument(
        "--caption_extention",
        type=str,
        default=None,
        help="extension of caption files (backward compatibility) / 読み込むcaptionファイルの拡張子(スペルミスを残してあります)",
    )
    parser.add_argument(
        "--keep_tokens",
        type=int,
        default=0,
        help="keep heading N tokens when shuffling caption tokens (token means comma separated strings) / captionのシャッフル時に、先頭からこの個数のトークンをシャッフルしないで残す(トークンはカンマ区切りの各部分を意味する)",
    )
    parser.add_argument("--color_aug", action="store_true", help="enable weak color augmentation / 学習時に色合いのaugmentationを有効にする")
    parser.add_argument("--flip_aug", action="store_true", help="enable horizontal flip augmentation / 学習時に左右反転のaugmentationを有効にする")
    parser.add_argument(
        "--face_crop_aug_range",
        type=str,
        default=None,
        help="enable face-centered crop augmentation and its range (e.g. 2.0,4.0) / 学習時に顔を中心とした切り出しaugmentationを有効にするときは倍率を指定する(例:2.0,4.0)",
    )
    parser.add_argument(
        "--random_crop",
        action="store_true",
        help="enable random crop (for style training in face-centered crop augmentation) / ランダムな切り出しを有効にする(顔を中心としたaugmentationを行うときに画風の学習用に指定する)",
    )
    parser.add_argument(
        "--debug_dataset", action="store_true", help="show images for debugging (do not train) / デバッグ用に学習データを画面表示する(学習は行わない)"
    )
    parser.add_argument(
        "--resolution",
        type=str,
        default=None,
        help="resolution in training ('size' or 'width,height') / 学習時の画像解像度('サイズ'指定、または'幅,高さ'指定)",
    )
    parser.add_argument(
        "--cache_latents",
        action="store_true",
        help="cache latents to reduce memory (augmentations must be disabled) / メモリ削減のためにlatentをcacheする(augmentationは使用不可)",
    )
    parser.add_argument("--vae_batch_size", type=int, default=1, help="batch size for caching latents / latentのcache時のバッチサイズ")
    parser.add_argument(
        "--enable_bucket", action="store_true", help="enable buckets for multi aspect ratio training / 複数解像度学習のためのbucketを有効にする"
    )
    parser.add_argument("--min_bucket_reso", type=int, default=256, help="minimum resolution for buckets / bucketの最小解像度")
    parser.add_argument("--max_bucket_reso", type=int, default=1024, help="maximum resolution for buckets / bucketの最大解像度")
    parser.add_argument(
        "--bucket_reso_steps",
        type=int,
        default=64,
        help="steps of resolution for buckets, divisible by 8 is recommended / bucketの解像度の単位、8で割り切れる値を推奨します",
    )
    parser.add_argument(
        "--bucket_no_upscale", action="store_true", help="make bucket for each image without upscaling / 画像を拡大せずbucketを作成します"
    )

    parser.add_argument(
        "--token_warmup_min",
        type=int,
        default=1,
        help="start learning at N tags (token means comma separated strinfloatgs) / タグ数をN個から増やしながら学習する",
    )

    parser.add_argument(
        "--token_warmup_step",
        type=float,
        default=0,
        help="tag length reaches maximum on N steps (or N*max_train_steps if N<1) / N(N<1ならN*max_train_steps)ステップでタグ長が最大になる。デフォルトは0(最初から最大)",
    )

    if support_caption_dropout:
        # Textual Inversion はcaptionのdropoutをsupportしない
        # いわゆるtensorのDropoutと紛らわしいのでprefixにcaptionを付けておく every_n_epochsは他と平仄を合わせてdefault Noneに
        parser.add_argument(
            "--caption_dropout_rate", type=float, default=0.0, help="Rate out dropout caption(0.0~1.0) / captionをdropoutする割合"
        )
        parser.add_argument(
            "--caption_dropout_every_n_epochs",
            type=int,
            default=0,
            help="Dropout all captions every N epochs / captionを指定エポックごとにdropoutする",
        )
        parser.add_argument(
            "--caption_tag_dropout_rate",
            type=float,
            default=0.0,
            help="Rate out dropout comma separated tokens(0.0~1.0) / カンマ区切りのタグをdropoutする割合",
        )

    if support_dreambooth:
        # DreamBooth dataset
        parser.add_argument("--reg_data_dir", type=str, default=None, help="directory for regularization images / 正則化画像データのディレクトリ")

    if support_caption:
        # caption dataset
        parser.add_argument("--in_json", type=str, default=None, help="json metadata for dataset / データセットのmetadataのjsonファイル")
        parser.add_argument(
            "--dataset_repeats", type=int, default=1, help="repeat dataset when training with captions / キャプションでの学習時にデータセットを繰り返す回数"
        )


def add_sd_saving_arguments(parser: argparse.ArgumentParser):
    parser.add_argument(
        "--save_model_as",
        type=str,
        default=None,
        choices=[None, "ckpt", "safetensors", "diffusers", "diffusers_safetensors"],
        help="format to save the model (default is same to original) / モデル保存時の形式(未指定時は元モデルと同じ)",
    )
    parser.add_argument(
        "--use_safetensors",
        action="store_true",
        help="use safetensors format to save (if save_model_as is not specified) / checkpoint、モデルをsafetensors形式で保存する(save_model_as未指定時)",
    )


def read_config_from_file(args: argparse.Namespace, parser: argparse.ArgumentParser):
    if not args.config_file:
        return args

    config_path = args.config_file + ".toml" if not args.config_file.endswith(".toml") else args.config_file

    if args.output_config:
        # check if config file exists
        if os.path.exists(config_path):
            print(f"Config file already exists. Aborting... / 出力先の設定ファイルが既に存在します: {config_path}")
            exit(1)

        # convert args to dictionary
        args_dict = vars(args)

        # remove unnecessary keys
        for key in ["config_file", "output_config"]:
            if key in args_dict:
                del args_dict[key]

        # get default args from parser
        default_args = vars(parser.parse_args([]))

        # remove default values: cannot use args_dict.items directly because it will be changed during iteration
        for key, value in list(args_dict.items()):
            if key in default_args and value == default_args[key]:
                del args_dict[key]

        # convert Path to str in dictionary
        for key, value in args_dict.items():
            if isinstance(value, pathlib.Path):
                args_dict[key] = str(value)

        # convert to toml and output to file
        with open(config_path, "w") as f:
            toml.dump(args_dict, f)

        print(f"Saved config file / 設定ファイルを保存しました: {config_path}")
        exit(0)

    if not os.path.exists(config_path):
        print(f"{config_path} not found.")
        exit(1)

    print(f"Loading settings from {config_path}...")
    with open(config_path, "r") as f:
        config_dict = toml.load(f)

    # combine all sections into one
    ignore_nesting_dict = {}
    for section_name, section_dict in config_dict.items():
        # if value is not dict, save key and value as is
        if not isinstance(section_dict, dict):
            ignore_nesting_dict[section_name] = section_dict
            continue

        # if value is dict, save all key and value into one dict
        for key, value in section_dict.items():
            ignore_nesting_dict[key] = value

    config_args = argparse.Namespace(**ignore_nesting_dict)
    args = parser.parse_args(namespace=config_args)
    args.config_file = os.path.splitext(args.config_file)[0]
    print(args.config_file)

    return args


# endregion

# region utils


def get_optimizer(args, trainable_params):
    # "Optimizer to use: AdamW, AdamW8bit, Lion, SGDNesterov, SGDNesterov8bit, DAdaptation, Adafactor"

    optimizer_type = args.optimizer_type
    if args.use_8bit_adam:
        assert (
            not args.use_lion_optimizer
        ), "both option use_8bit_adam and use_lion_optimizer are specified / use_8bit_adamとuse_lion_optimizerの両方のオプションが指定されています"
        assert (
            optimizer_type is None or optimizer_type == ""
        ), "both option use_8bit_adam and optimizer_type are specified / use_8bit_adamとoptimizer_typeの両方のオプションが指定されています"
        optimizer_type = "AdamW8bit"

    elif args.use_lion_optimizer:
        assert (
            optimizer_type is None or optimizer_type == ""
        ), "both option use_lion_optimizer and optimizer_type are specified / use_lion_optimizerとoptimizer_typeの両方のオプションが指定されています"
        optimizer_type = "Lion"

    if optimizer_type is None or optimizer_type == "":
        optimizer_type = "AdamW"
    optimizer_type = optimizer_type.lower()

    # 引数を分解する
    optimizer_kwargs = {}
    if args.optimizer_args is not None and len(args.optimizer_args) > 0:
        for arg in args.optimizer_args:
            key, value = arg.split("=")
            value = ast.literal_eval(value)

            # value = value.split(",")
            # for i in range(len(value)):
            #     if value[i].lower() == "true" or value[i].lower() == "false":
            #         value[i] = value[i].lower() == "true"
            #     else:
            #         value[i] = ast.float(value[i])
            # if len(value) == 1:
            #     value = value[0]
            # else:
            #     value = tuple(value)

            optimizer_kwargs[key] = value
    # print("optkwargs:", optimizer_kwargs)

    lr = args.learning_rate

    if optimizer_type == "AdamW8bit".lower():
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
        print(f"use 8-bit AdamW optimizer | {optimizer_kwargs}")
        optimizer_class = bnb.optim.AdamW8bit
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "SGDNesterov8bit".lower():
        try:
            import bitsandbytes as bnb
        except ImportError:
            raise ImportError("No bitsand bytes / bitsandbytesがインストールされていないようです")
        print(f"use 8-bit SGD with Nesterov optimizer | {optimizer_kwargs}")
        if "momentum" not in optimizer_kwargs:
            print(
                f"8-bit SGD with Nesterov must be with momentum, set momentum to 0.9 / 8-bit SGD with Nesterovはmomentum指定が必須のため0.9に設定します"
            )
            optimizer_kwargs["momentum"] = 0.9

        optimizer_class = bnb.optim.SGD8bit
        optimizer = optimizer_class(trainable_params, lr=lr, nesterov=True, **optimizer_kwargs)

    elif optimizer_type == "Lion".lower():
        try:
            import lion_pytorch
        except ImportError:
            raise ImportError("No lion_pytorch / lion_pytorch がインストールされていないようです")
        print(f"use Lion optimizer | {optimizer_kwargs}")
        optimizer_class = lion_pytorch.Lion
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "SGDNesterov".lower():
        print(f"use SGD with Nesterov optimizer | {optimizer_kwargs}")
        if "momentum" not in optimizer_kwargs:
            print(f"SGD with Nesterov must be with momentum, set momentum to 0.9 / SGD with Nesterovはmomentum指定が必須のため0.9に設定します")
            optimizer_kwargs["momentum"] = 0.9

        optimizer_class = torch.optim.SGD
        optimizer = optimizer_class(trainable_params, lr=lr, nesterov=True, **optimizer_kwargs)

    elif optimizer_type == "DAdaptation".lower():
        try:
            import dadaptation
        except ImportError:
            raise ImportError("No dadaptation / dadaptation がインストールされていないようです")
        print(f"use D-Adaptation Adam optimizer | {optimizer_kwargs}")

        actual_lr = lr
        lr_count = 1
        if type(trainable_params) == list and type(trainable_params[0]) == dict:
            lrs = set()
            actual_lr = trainable_params[0].get("lr", actual_lr)
            for group in trainable_params:
                lrs.add(group.get("lr", actual_lr))
            lr_count = len(lrs)

        if actual_lr <= 0.1:
            print(
                f"learning rate is too low. If using dadaptation, set learning rate around 1.0 / 学習率が低すぎるようです。1.0前後の値を指定してください: lr={actual_lr}"
            )
            print("recommend option: lr=1.0 / 推奨は1.0です")
        if lr_count > 1:
            print(
                f"when multiple learning rates are specified with dadaptation (e.g. for Text Encoder and U-Net), only the first one will take effect / D-Adaptationで複数の学習率を指定した場合(Text EncoderとU-Netなど)、最初の学習率のみが有効になります: lr={actual_lr}"
            )

        optimizer_class = dadaptation.DAdaptAdam
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "Adafactor".lower():
        # 引数を確認して適宜補正する
        if "relative_step" not in optimizer_kwargs:
            optimizer_kwargs["relative_step"] = True  # default
        if not optimizer_kwargs["relative_step"] and optimizer_kwargs.get("warmup_init", False):
            print(f"set relative_step to True because warmup_init is True / warmup_initがTrueのためrelative_stepをTrueにします")
            optimizer_kwargs["relative_step"] = True
        print(f"use Adafactor optimizer | {optimizer_kwargs}")

        if optimizer_kwargs["relative_step"]:
            print(f"relative_step is true / relative_stepがtrueです")
            if lr != 0.0:
                print(f"learning rate is used as initial_lr / 指定したlearning rateはinitial_lrとして使用されます")
            args.learning_rate = None

            # trainable_paramsがgroupだった時の処理:lrを削除する
            if type(trainable_params) == list and type(trainable_params[0]) == dict:
                has_group_lr = False
                for group in trainable_params:
                    p = group.pop("lr", None)
                    has_group_lr = has_group_lr or (p is not None)

                if has_group_lr:
                    # 一応argsを無効にしておく TODO 依存関係が逆転してるのであまり望ましくない
                    print(f"unet_lr and text_encoder_lr are ignored / unet_lrとtext_encoder_lrは無視されます")
                    args.unet_lr = None
                    args.text_encoder_lr = None

            if args.lr_scheduler != "adafactor":
                print(f"use adafactor_scheduler / スケジューラにadafactor_schedulerを使用します")
            args.lr_scheduler = f"adafactor:{lr}"  # ちょっと微妙だけど

            lr = None
        else:
            if args.max_grad_norm != 0.0:
                print(
                    f"because max_grad_norm is set, clip_grad_norm is enabled. consider set to 0 / max_grad_normが設定されているためclip_grad_normが有効になります。0に設定して無効にしたほうがいいかもしれません"
                )
            if args.lr_scheduler != "constant_with_warmup":
                print(f"constant_with_warmup will be good / スケジューラはconstant_with_warmupが良いかもしれません")
            if optimizer_kwargs.get("clip_threshold", 1.0) != 1.0:
                print(f"clip_threshold=1.0 will be good / clip_thresholdは1.0が良いかもしれません")

        optimizer_class = transformers.optimization.Adafactor
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    elif optimizer_type == "AdamW".lower():
        print(f"use AdamW optimizer | {optimizer_kwargs}")
        optimizer_class = torch.optim.AdamW
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    else:
        # 任意のoptimizerを使う
        optimizer_type = args.optimizer_type  # lowerでないやつ(微妙)
        print(f"use {optimizer_type} | {optimizer_kwargs}")
        if "." not in optimizer_type:
            optimizer_module = torch.optim
        else:
            values = optimizer_type.split(".")
            optimizer_module = importlib.import_module(".".join(values[:-1]))
            optimizer_type = values[-1]

        optimizer_class = getattr(optimizer_module, optimizer_type)
        optimizer = optimizer_class(trainable_params, lr=lr, **optimizer_kwargs)

    optimizer_name = optimizer_class.__module__ + "." + optimizer_class.__name__
    optimizer_args = ",".join([f"{k}={v}" for k, v in optimizer_kwargs.items()])

    return optimizer_name, optimizer_args, optimizer


# Monkeypatch newer get_scheduler() function overridng current version of diffusers.optimizer.get_scheduler
# code is taken from https://github.com/huggingface/diffusers diffusers.optimizer, commit d87cc15977b87160c30abaace3894e802ad9e1e6
# Which is a newer release of diffusers than currently packaged with sd-scripts
# This code can be removed when newer diffusers version (v0.12.1 or greater) is tested and implemented to sd-scripts


def get_scheduler_fix(args, optimizer: Optimizer, num_processes: int):
    """
    Unified API to get any scheduler from its name.
    """
    name = args.lr_scheduler
    num_warmup_steps = args.lr_warmup_steps
    num_training_steps = args.max_train_steps * num_processes * args.gradient_accumulation_steps
    num_cycles = args.lr_scheduler_num_cycles
    power = args.lr_scheduler_power

    lr_scheduler_kwargs = {}  # get custom lr_scheduler kwargs
    if args.lr_scheduler_args is not None and len(args.lr_scheduler_args) > 0:
        for arg in args.lr_scheduler_args:
            key, value = arg.split("=")

            value = ast.literal_eval(value)
            # value = value.split(",")
            # for i in range(len(value)):
            #     if value[i].lower() == "true" or value[i].lower() == "false":
            #         value[i] = value[i].lower() == "true"
            #     else:
            #         value[i] = ast.literal_eval(value[i])
            # if len(value) == 1:
            #     value = value[0]
            # else:
            #     value = list(value)  # some may use list?

            lr_scheduler_kwargs[key] = value

    # using any lr_scheduler from other library
    if args.lr_scheduler_type:
        lr_scheduler_type = args.lr_scheduler_type
        print(f"use {lr_scheduler_type} | {lr_scheduler_kwargs} as lr_scheduler")
        if "." not in lr_scheduler_type:  # default to use torch.optim
            lr_scheduler_module = torch.optim.lr_scheduler
        else:
            values = lr_scheduler_type.split(".")
            lr_scheduler_module = importlib.import_module(".".join(values[:-1]))
            lr_scheduler_type = values[-1]
        lr_scheduler_class = getattr(lr_scheduler_module, lr_scheduler_type)
        lr_scheduler = lr_scheduler_class(optimizer, **lr_scheduler_kwargs)
        return lr_scheduler

    if name.startswith("adafactor"):
        assert (
            type(optimizer) == transformers.optimization.Adafactor
        ), f"adafactor scheduler must be used with Adafactor optimizer / adafactor schedulerはAdafactorオプティマイザと同時に使ってください"
        initial_lr = float(name.split(":")[1])
        # print("adafactor scheduler init lr", initial_lr)
        return transformers.optimization.AdafactorSchedule(optimizer, initial_lr)

    name = SchedulerType(name)
    schedule_func = TYPE_TO_SCHEDULER_FUNCTION[name]
    if name == SchedulerType.CONSTANT:
        return schedule_func(optimizer)

    # All other schedulers require `num_warmup_steps`
    if num_warmup_steps is None:
        raise ValueError(f"{name} requires `num_warmup_steps`, please provide that argument.")

    if name == SchedulerType.CONSTANT_WITH_WARMUP:
        return schedule_func(optimizer, num_warmup_steps=num_warmup_steps)

    # All other schedulers require `num_training_steps`
    if num_training_steps is None:
        raise ValueError(f"{name} requires `num_training_steps`, please provide that argument.")

    if name == SchedulerType.COSINE_WITH_RESTARTS:
        return schedule_func(
            optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, num_cycles=num_cycles
        )

    if name == SchedulerType.POLYNOMIAL:
        return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps, power=power)

    return schedule_func(optimizer, num_warmup_steps=num_warmup_steps, num_training_steps=num_training_steps)


def prepare_dataset_args(args: argparse.Namespace, support_metadata: bool):
    # backward compatibility
    if args.caption_extention is not None:
        args.caption_extension = args.caption_extention
        args.caption_extention = None

    # assert args.resolution is not None, f"resolution is required / resolution(解像度)を指定してください"
    if args.resolution is not None:
        args.resolution = tuple([int(r) for r in args.resolution.split(",")])
        if len(args.resolution) == 1:
            args.resolution = (args.resolution[0], args.resolution[0])
        assert (
            len(args.resolution) == 2
        ), f"resolution must be 'size' or 'width,height' / resolution(解像度)は'サイズ'または'幅','高さ'で指定してください: {args.resolution}"

    if args.face_crop_aug_range is not None:
        args.face_crop_aug_range = tuple([float(r) for r in args.face_crop_aug_range.split(",")])
        assert (
            len(args.face_crop_aug_range) == 2 and args.face_crop_aug_range[0] <= args.face_crop_aug_range[1]
        ), f"face_crop_aug_range must be two floats / face_crop_aug_rangeは'下限,上限'で指定してください: {args.face_crop_aug_range}"
    else:
        args.face_crop_aug_range = None

    if support_metadata:
        if args.in_json is not None and (args.color_aug or args.random_crop):
            print(
                f"latents in npz is ignored when color_aug or random_crop is True / color_augまたはrandom_cropを有効にした場合、npzファイルのlatentsは無視されます"
            )


def load_tokenizer(args: argparse.Namespace):
    print("prepare tokenizer")
    original_path = V2_STABLE_DIFFUSION_PATH if args.v2 else TOKENIZER_PATH

    tokenizer: CLIPTokenizer = None
    if args.tokenizer_cache_dir:
        local_tokenizer_path = os.path.join(args.tokenizer_cache_dir, original_path.replace("/", "_"))
        if os.path.exists(local_tokenizer_path):
            print(f"load tokenizer from cache: {local_tokenizer_path}")
            tokenizer = CLIPTokenizer.from_pretrained(local_tokenizer_path)  # same for v1 and v2

    if tokenizer is None:
        if args.v2:
            tokenizer = CLIPTokenizer.from_pretrained(original_path, subfolder="tokenizer")
        else:
            tokenizer = CLIPTokenizer.from_pretrained(original_path)

    if hasattr(args, "max_token_length") and args.max_token_length is not None:
        print(f"update token length: {args.max_token_length}")

    if args.tokenizer_cache_dir and not os.path.exists(local_tokenizer_path):
        print(f"save Tokenizer to cache: {local_tokenizer_path}")
        tokenizer.save_pretrained(local_tokenizer_path)

    return tokenizer


def prepare_accelerator(args: argparse.Namespace):
    if args.logging_dir is None:
        log_with = None
        logging_dir = None
    else:
        log_with = "tensorboard"
        log_prefix = "" if args.log_prefix is None else args.log_prefix
        logging_dir = args.logging_dir + "/" + log_prefix + time.strftime("%Y%m%d%H%M%S", time.localtime())

    accelerator = Accelerator(
        gradient_accumulation_steps=args.gradient_accumulation_steps,
        mixed_precision=args.mixed_precision,
        log_with=log_with,
        logging_dir=logging_dir,
    )

    # accelerateの互換性問題を解決する
    accelerator_0_15 = True
    try:
        accelerator.unwrap_model("dummy", True)
        print("Using accelerator 0.15.0 or above.")
    except TypeError:
        accelerator_0_15 = False

    def unwrap_model(model):
        if accelerator_0_15:
            return accelerator.unwrap_model(model, True)
        return accelerator.unwrap_model(model)

    return accelerator, unwrap_model


def prepare_dtype(args: argparse.Namespace):
    weight_dtype = torch.float32
    if args.mixed_precision == "fp16":
        weight_dtype = torch.float16
    elif args.mixed_precision == "bf16":
        weight_dtype = torch.bfloat16

    save_dtype = None
    if args.save_precision == "fp16":
        save_dtype = torch.float16
    elif args.save_precision == "bf16":
        save_dtype = torch.bfloat16
    elif args.save_precision == "float":
        save_dtype = torch.float32

    return weight_dtype, save_dtype


def load_target_model(args: argparse.Namespace, weight_dtype, device='cpu'):
    name_or_path = args.pretrained_model_name_or_path
    name_or_path = os.readlink(name_or_path) if os.path.islink(name_or_path) else name_or_path
    load_stable_diffusion_format = os.path.isfile(name_or_path)  # determine SD or Diffusers
    if load_stable_diffusion_format:
        print("load StableDiffusion checkpoint")
        text_encoder, vae, unet = model_util.load_models_from_stable_diffusion_checkpoint(args.v2, name_or_path, device)
    else:
        # Diffusers model is loaded to CPU
        print("load Diffusers pretrained models")
        try:
            pipe = StableDiffusionPipeline.from_pretrained(name_or_path, tokenizer=None, safety_checker=None)
        except EnvironmentError as ex:
            print(
                f"model is not found as a file or in Hugging Face, perhaps file name is wrong? / 指定したモデル名のファイル、またはHugging Faceのモデルが見つかりません。ファイル名が誤っているかもしれません: {name_or_path}"
            )
        text_encoder = pipe.text_encoder
        vae = pipe.vae
        unet = pipe.unet
        del pipe

    # VAEを読み込む
    if args.vae is not None:
        vae = model_util.load_vae(args.vae, weight_dtype)
        print("additional VAE loaded")

    return text_encoder, vae, unet, load_stable_diffusion_format


def patch_accelerator_for_fp16_training(accelerator):
    org_unscale_grads = accelerator.scaler._unscale_grads_

    def _unscale_grads_replacer(optimizer, inv_scale, found_inf, allow_fp16):
        return org_unscale_grads(optimizer, inv_scale, found_inf, True)

    accelerator.scaler._unscale_grads_ = _unscale_grads_replacer


def get_hidden_states(args: argparse.Namespace, input_ids, tokenizer, text_encoder, weight_dtype=None):
    # with no_token_padding, the length is not max length, return result immediately
    if input_ids.size()[-1] != tokenizer.model_max_length:
        return text_encoder(input_ids)[0]

    b_size = input_ids.size()[0]
    input_ids = input_ids.reshape((-1, tokenizer.model_max_length))  # batch_size*3, 77

    if args.clip_skip is None:
        encoder_hidden_states = text_encoder(input_ids)[0]
    else:
        enc_out = text_encoder(input_ids, output_hidden_states=True, return_dict=True)
        encoder_hidden_states = enc_out["hidden_states"][-args.clip_skip]
        encoder_hidden_states = text_encoder.text_model.final_layer_norm(encoder_hidden_states)

    # bs*3, 77, 768 or 1024
    encoder_hidden_states = encoder_hidden_states.reshape((b_size, -1, encoder_hidden_states.shape[-1]))

    if args.max_token_length is not None:
        if args.v2:
            # v2: <BOS>...<EOS> <PAD> ... の三連を <BOS>...<EOS> <PAD> ... へ戻す 正直この実装でいいのかわからん
            states_list = [encoder_hidden_states[:, 0].unsqueeze(1)]  # <BOS>
            for i in range(1, args.max_token_length, tokenizer.model_max_length):
                chunk = encoder_hidden_states[:, i : i + tokenizer.model_max_length - 2]  # <BOS> の後から 最後の前まで
                if i > 0:
                    for j in range(len(chunk)):
                        if input_ids[j, 1] == tokenizer.eos_token:  # 空、つまり <BOS> <EOS> <PAD> ...のパターン
                            chunk[j, 0] = chunk[j, 1]  # 次の <PAD> の値をコピーする
                states_list.append(chunk)  # <BOS> の後から <EOS> の前まで
            states_list.append(encoder_hidden_states[:, -1].unsqueeze(1))  # <EOS> か <PAD> のどちらか
            encoder_hidden_states = torch.cat(states_list, dim=1)
        else:
            # v1: <BOS>...<EOS> の三連を <BOS>...<EOS> へ戻す
            states_list = [encoder_hidden_states[:, 0].unsqueeze(1)]  # <BOS>
            for i in range(1, args.max_token_length, tokenizer.model_max_length):
                states_list.append(encoder_hidden_states[:, i : i + tokenizer.model_max_length - 2])  # <BOS> の後から <EOS> の前まで
            states_list.append(encoder_hidden_states[:, -1].unsqueeze(1))  # <EOS>
            encoder_hidden_states = torch.cat(states_list, dim=1)

    if weight_dtype is not None:
        # this is required for additional network training
        encoder_hidden_states = encoder_hidden_states.to(weight_dtype)

    return encoder_hidden_states


def get_epoch_ckpt_name(args: argparse.Namespace, use_safetensors, epoch):
    model_name = DEFAULT_EPOCH_NAME if args.output_name is None else args.output_name
    ckpt_name = EPOCH_FILE_NAME.format(model_name, epoch) + (".safetensors" if use_safetensors else ".ckpt")
    return model_name, ckpt_name


def save_on_epoch_end(args: argparse.Namespace, save_func, remove_old_func, epoch_no: int, num_train_epochs: int):
    saving = epoch_no % args.save_every_n_epochs == 0 and epoch_no < num_train_epochs
    if saving:
        os.makedirs(args.output_dir, exist_ok=True)
        save_func()

        if args.save_last_n_epochs is not None:
            remove_epoch_no = epoch_no - args.save_every_n_epochs * args.save_last_n_epochs
            remove_old_func(remove_epoch_no)
    return saving


def save_sd_model_on_epoch_end(
    args: argparse.Namespace,
    accelerator,
    src_path: str,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    save_dtype: torch.dtype,
    epoch: int,
    num_train_epochs: int,
    global_step: int,
    text_encoder,
    unet,
    vae,
):
    epoch_no = epoch + 1
    model_name, ckpt_name = get_epoch_ckpt_name(args, use_safetensors, epoch_no)

    if save_stable_diffusion_format:

        def save_sd():
            ckpt_file = os.path.join(args.output_dir, ckpt_name)
            print(f"saving checkpoint: {ckpt_file}")
            model_util.save_stable_diffusion_checkpoint(
                args.v2, ckpt_file, text_encoder, unet, src_path, epoch_no, global_step, save_dtype, vae
            )

        def remove_sd(old_epoch_no):
            _, old_ckpt_name = get_epoch_ckpt_name(args, use_safetensors, old_epoch_no)
            old_ckpt_file = os.path.join(args.output_dir, old_ckpt_name)
            if os.path.exists(old_ckpt_file):
                print(f"removing old checkpoint: {old_ckpt_file}")
                os.remove(old_ckpt_file)

        save_func = save_sd
        remove_old_func = remove_sd
    else:

        def save_du():
            out_dir = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, epoch_no))
            print(f"saving model: {out_dir}")
            os.makedirs(out_dir, exist_ok=True)
            model_util.save_diffusers_checkpoint(
                args.v2, out_dir, text_encoder, unet, src_path, vae=vae, use_safetensors=use_safetensors
            )

        def remove_du(old_epoch_no):
            out_dir_old = os.path.join(args.output_dir, EPOCH_DIFFUSERS_DIR_NAME.format(model_name, old_epoch_no))
            if os.path.exists(out_dir_old):
                print(f"removing old model: {out_dir_old}")
                shutil.rmtree(out_dir_old)

        save_func = save_du
        remove_old_func = remove_du

    saving = save_on_epoch_end(args, save_func, remove_old_func, epoch_no, num_train_epochs)
    if saving and args.save_state:
        save_state_on_epoch_end(args, accelerator, model_name, epoch_no)


def save_state_on_epoch_end(args: argparse.Namespace, accelerator, model_name, epoch_no):
    print("saving state.")
    accelerator.save_state(os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, epoch_no)))

    last_n_epochs = args.save_last_n_epochs_state if args.save_last_n_epochs_state else args.save_last_n_epochs
    if last_n_epochs is not None:
        remove_epoch_no = epoch_no - args.save_every_n_epochs * last_n_epochs
        state_dir_old = os.path.join(args.output_dir, EPOCH_STATE_NAME.format(model_name, remove_epoch_no))
        if os.path.exists(state_dir_old):
            print(f"removing old state: {state_dir_old}")
            shutil.rmtree(state_dir_old)


def save_sd_model_on_train_end(
    args: argparse.Namespace,
    src_path: str,
    save_stable_diffusion_format: bool,
    use_safetensors: bool,
    save_dtype: torch.dtype,
    epoch: int,
    global_step: int,
    text_encoder,
    unet,
    vae,
):
    model_name = DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name

    if save_stable_diffusion_format:
        os.makedirs(args.output_dir, exist_ok=True)

        ckpt_name = model_name + (".safetensors" if use_safetensors else ".ckpt")
        ckpt_file = os.path.join(args.output_dir, ckpt_name)

        print(f"save trained model as StableDiffusion checkpoint to {ckpt_file}")
        model_util.save_stable_diffusion_checkpoint(
            args.v2, ckpt_file, text_encoder, unet, src_path, epoch, global_step, save_dtype, vae
        )
    else:
        out_dir = os.path.join(args.output_dir, model_name)
        os.makedirs(out_dir, exist_ok=True)

        print(f"save trained model as Diffusers to {out_dir}")
        model_util.save_diffusers_checkpoint(
            args.v2, out_dir, text_encoder, unet, src_path, vae=vae, use_safetensors=use_safetensors
        )


def save_state_on_train_end(args: argparse.Namespace, accelerator):
    print("saving last state.")
    os.makedirs(args.output_dir, exist_ok=True)
    model_name = DEFAULT_LAST_OUTPUT_NAME if args.output_name is None else args.output_name
    accelerator.save_state(os.path.join(args.output_dir, LAST_STATE_NAME.format(model_name)))


# scheduler:
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
SCHEDLER_SCHEDULE = "scaled_linear"


def sample_images(
    accelerator, args: argparse.Namespace, epoch, steps, device, vae, tokenizer, text_encoder, unet, prompt_replacement=None
):
    """
    StableDiffusionLongPromptWeightingPipelineの改造版を使うようにしたので、clip skipおよびプロンプトの重みづけに対応した
    """
    if args.sample_every_n_steps is None and args.sample_every_n_epochs is None:
        return
    if args.sample_every_n_epochs is not None:
        # sample_every_n_steps は無視する
        if epoch is None or epoch % args.sample_every_n_epochs != 0:
            return
    else:
        if steps % args.sample_every_n_steps != 0 or epoch is not None:  # steps is not divisible or end of epoch
            return

    print(f"generating sample images at step / サンプル画像生成 ステップ: {steps}")
    if not os.path.isfile(args.sample_prompts):
        print(f"No prompt file / プロンプトファイルがありません: {args.sample_prompts}")
        return

    org_vae_device = vae.device  # CPUにいるはず
    vae.to(device)

    # read prompts
    with open(args.sample_prompts, "rt", encoding="utf-8") as f:
        prompts = f.readlines()

    # schedulerを用意する
    sched_init_args = {}
    if args.sample_sampler == "ddim":
        scheduler_cls = DDIMScheduler
    elif args.sample_sampler == "ddpm":  # ddpmはおかしくなるのでoptionから外してある
        scheduler_cls = DDPMScheduler
    elif args.sample_sampler == "pndm":
        scheduler_cls = PNDMScheduler
    elif args.sample_sampler == "lms" or args.sample_sampler == "k_lms":
        scheduler_cls = LMSDiscreteScheduler
    elif args.sample_sampler == "euler" or args.sample_sampler == "k_euler":
        scheduler_cls = EulerDiscreteScheduler
    elif args.sample_sampler == "euler_a" or args.sample_sampler == "k_euler_a":
        scheduler_cls = EulerAncestralDiscreteScheduler
    elif args.sample_sampler == "dpmsolver" or args.sample_sampler == "dpmsolver++":
        scheduler_cls = DPMSolverMultistepScheduler
        sched_init_args["algorithm_type"] = args.sample_sampler
    elif args.sample_sampler == "dpmsingle":
        scheduler_cls = DPMSolverSinglestepScheduler
    elif args.sample_sampler == "heun":
        scheduler_cls = HeunDiscreteScheduler
    elif args.sample_sampler == "dpm_2" or args.sample_sampler == "k_dpm_2":
        scheduler_cls = KDPM2DiscreteScheduler
    elif args.sample_sampler == "dpm_2_a" or args.sample_sampler == "k_dpm_2_a":
        scheduler_cls = KDPM2AncestralDiscreteScheduler
    else:
        scheduler_cls = DDIMScheduler

    if args.v_parameterization:
        sched_init_args["prediction_type"] = "v_prediction"

    scheduler = scheduler_cls(
        num_train_timesteps=SCHEDULER_TIMESTEPS,
        beta_start=SCHEDULER_LINEAR_START,
        beta_end=SCHEDULER_LINEAR_END,
        beta_schedule=SCHEDLER_SCHEDULE,
        **sched_init_args,
    )

    # clip_sample=Trueにする
    if hasattr(scheduler.config, "clip_sample") and scheduler.config.clip_sample is False:
        # print("set clip_sample to True")
        scheduler.config.clip_sample = True

    pipeline = StableDiffusionLongPromptWeightingPipeline(
        text_encoder=text_encoder,
        vae=vae,
        unet=unet,
        tokenizer=tokenizer,
        scheduler=scheduler,
        clip_skip=args.clip_skip,
        safety_checker=None,
        feature_extractor=None,
        requires_safety_checker=False,
    )
    pipeline.to(device)

    save_dir = args.output_dir + "/sample"
    os.makedirs(save_dir, exist_ok=True)

    rng_state = torch.get_rng_state()
    cuda_rng_state = torch.cuda.get_rng_state()

    with torch.no_grad():
        with accelerator.autocast():
            for i, prompt in enumerate(prompts):
                if not accelerator.is_main_process:
                    continue
                prompt = prompt.strip()
                if len(prompt) == 0 or prompt[0] == "#":
                    continue

                # subset of gen_img_diffusers
                prompt_args = prompt.split(" --")
                prompt = prompt_args[0]
                negative_prompt = None
                sample_steps = 30
                width = height = 512
                scale = 7.5
                seed = None
                for parg in prompt_args:
                    try:
                        m = re.match(r"w (\d+)", parg, re.IGNORECASE)
                        if m:
                            width = int(m.group(1))
                            continue

                        m = re.match(r"h (\d+)", parg, re.IGNORECASE)
                        if m:
                            height = int(m.group(1))
                            continue

                        m = re.match(r"d (\d+)", parg, re.IGNORECASE)
                        if m:
                            seed = int(m.group(1))
                            continue

                        m = re.match(r"s (\d+)", parg, re.IGNORECASE)
                        if m:  # steps
                            sample_steps = max(1, min(1000, int(m.group(1))))
                            continue

                        m = re.match(r"l ([\d\.]+)", parg, re.IGNORECASE)
                        if m:  # scale
                            scale = float(m.group(1))
                            continue

                        m = re.match(r"n (.+)", parg, re.IGNORECASE)
                        if m:  # negative prompt
                            negative_prompt = m.group(1)
                            continue

                    except ValueError as ex:
                        print(f"Exception in parsing / 解析エラー: {parg}")
                        print(ex)

                if seed is not None:
                    torch.manual_seed(seed)
                    torch.cuda.manual_seed(seed)

                if prompt_replacement is not None:
                    prompt = prompt.replace(prompt_replacement[0], prompt_replacement[1])
                    if negative_prompt is not None:
                        negative_prompt = negative_prompt.replace(prompt_replacement[0], prompt_replacement[1])

                height = max(64, height - height % 8)  # round to divisible by 8
                width = max(64, width - width % 8)  # round to divisible by 8
                print(f"prompt: {prompt}")
                print(f"negative_prompt: {negative_prompt}")
                print(f"height: {height}")
                print(f"width: {width}")
                print(f"sample_steps: {sample_steps}")
                print(f"scale: {scale}")
                image = pipeline(
                    prompt=prompt,
                    height=height,
                    width=width,
                    num_inference_steps=sample_steps,
                    guidance_scale=scale,
                    negative_prompt=negative_prompt,
                ).images[0]

                ts_str = time.strftime("%Y%m%d%H%M%S", time.localtime())
                num_suffix = f"e{epoch:06d}" if epoch is not None else f"{steps:06d}"
                seed_suffix = "" if seed is None else f"_{seed}"
                img_filename = (
                    f"{'' if args.output_name is None else args.output_name + '_'}{ts_str}_{num_suffix}_{i:02d}{seed_suffix}.png"
                )

                image.save(os.path.join(save_dir, img_filename))

    # clear pipeline and cache to reduce vram usage
    del pipeline
    torch.cuda.empty_cache()

    torch.set_rng_state(rng_state)
    torch.cuda.set_rng_state(cuda_rng_state)
    vae.to(org_vae_device)


# endregion

# region 前処理用


class ImageLoadingDataset(torch.utils.data.Dataset):
    def __init__(self, image_paths):
        self.images = image_paths

    def __len__(self):
        return len(self.images)

    def __getitem__(self, idx):
        img_path = self.images[idx]

        try:
            image = Image.open(img_path).convert("RGB")
            # convert to tensor temporarily so dataloader will accept it
            tensor_pil = transforms.functional.pil_to_tensor(image)
        except Exception as e:
            print(f"Could not load image path / 画像を読み込めません: {img_path}, error: {e}")
            return None

        return (tensor_pil, img_path)


# endregion


# collate_fn用 epoch,stepはmultiprocessing.Value
class collater_class:
    def __init__(self, epoch, step, dataset):
        self.current_epoch = epoch
        self.current_step = step
        self.dataset = dataset # not used if worker_info is not None, in case of multiprocessing

    def __call__(self, examples):
        worker_info = torch.utils.data.get_worker_info()
        # worker_info is None in the main process
        if worker_info is not None:
            dataset = worker_info.dataset
        else:
            dataset = self.dataset

        # set epoch and step
        dataset.set_current_epoch(self.current_epoch.value)
        dataset.set_current_step(self.current_step.value)
        return examples[0]