import torch import torch.nn as nn import torchvision # VGG architecter, used for the perceptual loss using a pretrained VGG network class VGG19(torch.nn.Module): def __init__(self, requires_grad=False): super().__init__() vgg_pretrained_features = torchvision.models.vgg19(pretrained=True).features self.slice1 = torch.nn.Sequential() self.slice2 = torch.nn.Sequential() self.slice3 = torch.nn.Sequential() self.slice4 = torch.nn.Sequential() self.slice5 = torch.nn.Sequential() self.slice6 = torch.nn.Sequential() for x in range(2): self.slice1.add_module(str(x), vgg_pretrained_features[x]) for x in range(2, 7): self.slice2.add_module(str(x), vgg_pretrained_features[x]) for x in range(7, 12): self.slice3.add_module(str(x), vgg_pretrained_features[x]) for x in range(12, 21): self.slice4.add_module(str(x), vgg_pretrained_features[x]) for x in range(21, 32): self.slice5.add_module(str(x), vgg_pretrained_features[x]) for x in range(32, 36): self.slice6.add_module(str(x), vgg_pretrained_features[x]) if not requires_grad: for param in self.parameters(): param.requires_grad = False self.pool = nn.AdaptiveAvgPool2d(output_size=1) self.mean = torch.tensor([0.485, 0.456, 0.406]).view(1,-1, 1, 1).cuda() * 2 - 1 self.std = torch.tensor([0.229, 0.224, 0.225]).view(1,-1, 1, 1).cuda() * 2 def forward(self, X): # relui_1 X = (X-self.mean)/self.std h_relu1 = self.slice1(X) h_relu2 = self.slice2(h_relu1) h_relu3 = self.slice3(h_relu2) h_relu4 = self.slice4(h_relu3) h_relu5 = self.slice5[:-2](h_relu4) out = [h_relu1, h_relu2, h_relu3, h_relu4, h_relu5] return out # Perceptual loss that uses a pretrained VGG network class VGGLoss(nn.Module): def __init__(self): super(VGGLoss, self).__init__() self.vgg = VGG19().cuda() self.criterion = nn.L1Loss() self.weights = [1.0 / 32, 1.0 / 16, 1.0 / 8, 1.0 / 4, 1.0] def forward(self, x, y): x_vgg, y_vgg = self.vgg(x), self.vgg(y) loss = 0 for i in range(len(x_vgg)): loss += self.weights[i] * self.criterion(x_vgg[i], y_vgg[i].detach()) return loss