import numpy as np import matplotlib.pyplot as plt from PIL import Image import cv2 import random import math import argparse import torch from torch.utils import data from torch.nn import functional as F from torch import autograd from torch.nn import init import torchvision.transforms as transforms from model.stylegan.op import conv2d_gradfix from model.encoder.encoders.psp_encoders import GradualStyleEncoder from model.encoder.align_all_parallel import get_landmark def visualize(img_arr, dpi): plt.figure(figsize=(10,10),dpi=dpi) plt.imshow(((img_arr.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8)) plt.axis('off') plt.show() def save_image(img, filename): tmp = ((img.detach().cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8) cv2.imwrite(filename, cv2.cvtColor(tmp, cv2.COLOR_RGB2BGR)) def load_image(filename): transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5],std=[0.5,0.5,0.5]), ]) img = Image.open(filename) img = transform(img) return img.unsqueeze(dim=0) def data_sampler(dataset, shuffle, distributed): if distributed: return data.distributed.DistributedSampler(dataset, shuffle=shuffle) if shuffle: return data.RandomSampler(dataset) else: return data.SequentialSampler(dataset) def requires_grad(model, flag=True): for p in model.parameters(): p.requires_grad = flag def accumulate(model1, model2, decay=0.999): par1 = dict(model1.named_parameters()) par2 = dict(model2.named_parameters()) for k in par1.keys(): par1[k].data.mul_(decay).add_(par2[k].data, alpha=1 - decay) def sample_data(loader): while True: for batch in loader: yield batch def d_logistic_loss(real_pred, fake_pred): real_loss = F.softplus(-real_pred) fake_loss = F.softplus(fake_pred) return real_loss.mean() + fake_loss.mean() def d_r1_loss(real_pred, real_img): with conv2d_gradfix.no_weight_gradients(): grad_real, = autograd.grad( outputs=real_pred.sum(), inputs=real_img, create_graph=True ) grad_penalty = grad_real.pow(2).reshape(grad_real.shape[0], -1).sum(1).mean() return grad_penalty def g_nonsaturating_loss(fake_pred): loss = F.softplus(-fake_pred).mean() return loss def g_path_regularize(fake_img, latents, mean_path_length, decay=0.01): noise = torch.randn_like(fake_img) / math.sqrt( fake_img.shape[2] * fake_img.shape[3] ) grad, = autograd.grad( outputs=(fake_img * noise).sum(), inputs=latents, create_graph=True ) path_lengths = torch.sqrt(grad.pow(2).sum(2).mean(1)) path_mean = mean_path_length + decay * (path_lengths.mean() - mean_path_length) path_penalty = (path_lengths - path_mean).pow(2).mean() return path_penalty, path_mean.detach(), path_lengths def make_noise(batch, latent_dim, n_noise, device): if n_noise == 1: return torch.randn(batch, latent_dim, device=device) noises = torch.randn(n_noise, batch, latent_dim, device=device).unbind(0) return noises def mixing_noise(batch, latent_dim, prob, device): if prob > 0 and random.random() < prob: return make_noise(batch, latent_dim, 2, device) else: return [make_noise(batch, latent_dim, 1, device)] def set_grad_none(model, targets): for n, p in model.named_parameters(): if n in targets: p.grad = None def weights_init(m): classname = m.__class__.__name__ if classname.find('BatchNorm2d') != -1: if hasattr(m, 'weight') and m.weight is not None: init.normal_(m.weight.data, 1.0, 0.02) if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) elif hasattr(m, 'weight') and (classname.find('Conv') != -1 or classname.find('Linear') != -1): init.kaiming_normal_(m.weight.data, a=0, mode='fan_in') if hasattr(m, 'bias') and m.bias is not None: init.constant_(m.bias.data, 0.0) def load_psp_standalone(checkpoint_path, device='cuda'): ckpt = torch.load(checkpoint_path, map_location='cpu') opts = ckpt['opts'] if 'output_size' not in opts: opts['output_size'] = 1024 opts['n_styles'] = int(math.log(opts['output_size'], 2)) * 2 - 2 opts = argparse.Namespace(**opts) psp = GradualStyleEncoder(50, 'ir_se', opts) psp_dict = {k.replace('encoder.', ''): v for k, v in ckpt['state_dict'].items() if k.startswith('encoder.')} psp.load_state_dict(psp_dict) psp.eval() psp = psp.to(device) latent_avg = ckpt['latent_avg'].to(device) def add_latent_avg(model, inputs, outputs): return outputs + latent_avg.repeat(outputs.shape[0], 1, 1) psp.register_forward_hook(add_latent_avg) return psp def get_video_crop_parameter(filepath, predictor, padding=[200,200,200,200]): if type(filepath) == str: img = dlib.load_rgb_image(filepath) else: img = filepath lm = get_landmark(img, predictor) if lm is None: return None lm_chin = lm[0 : 17] # left-right lm_eyebrow_left = lm[17 : 22] # left-right lm_eyebrow_right = lm[22 : 27] # left-right lm_nose = lm[27 : 31] # top-down lm_nostrils = lm[31 : 36] # top-down lm_eye_left = lm[36 : 42] # left-clockwise lm_eye_right = lm[42 : 48] # left-clockwise lm_mouth_outer = lm[48 : 60] # left-clockwise lm_mouth_inner = lm[60 : 68] # left-clockwise scale = 64. / (np.mean(lm_eye_right[:,0])-np.mean(lm_eye_left[:,0])) center = ((np.mean(lm_eye_right, axis=0)+np.mean(lm_eye_left, axis=0)) / 2) * scale h, w = round(img.shape[0] * scale), round(img.shape[1] * scale) left = max(round(center[0] - padding[0]), 0) // 8 * 8 right = min(round(center[0] + padding[1]), w) // 8 * 8 top = max(round(center[1] - padding[2]), 0) // 8 * 8 bottom = min(round(center[1] + padding[3]), h) // 8 * 8 return h,w,top,bottom,left,right,scale def tensor2cv2(img): tmp = ((img.cpu().numpy().transpose(1, 2, 0) + 1.0) * 127.5).astype(np.uint8) return cv2.cvtColor(tmp, cv2.COLOR_RGB2BGR) # get parameters from the stylegan and mark them with their layers def gather_params(G): params = dict( [(res, {}) for res in range(18)] + [("others", {})] ) for n, p in sorted(list(G.named_buffers()) + list(G.named_parameters())): if n.startswith("convs"): layer = int(n.split(".")[1]) + 1 params[layer][n] = p elif n.startswith("to_rgbs"): layer = int(n.split(".")[1]) * 2 + 3 params[layer][n] = p elif n.startswith("conv1"): params[0][n] = p elif n.startswith("to_rgb1"): params[1][n] = p else: params["others"][n] = p return params # blend the ffhq stylegan model and the finetuned model for toonify # see ``Resolution Dependent GAN Interpolation for Controllable Image Synthesis Between Domains'' def blend_models(G_low, G_high, weight=[1]*7+[0]*11): params_low = gather_params(G_low) params_high = gather_params(G_high) for res in range(18): for n, p in params_high[res].items(): params_high[res][n] = params_high[res][n] * (1-weight[res]) + params_low[res][n] * weight[res] state_dict = {} for _, p in params_high.items(): state_dict.update(p) return state_dict