Spaces:
Sleeping
Sleeping
# almost the same as model.stylegan.non_leaking | |
# we only modify the parameters in sample_affine() to make the transformations mild | |
import math | |
import torch | |
from torch import autograd | |
from torch.nn import functional as F | |
import numpy as np | |
from model.stylegan.distributed import reduce_sum | |
from model.stylegan.op import upfirdn2d | |
class AdaptiveAugment: | |
def __init__(self, ada_aug_target, ada_aug_len, update_every, device): | |
self.ada_aug_target = ada_aug_target | |
self.ada_aug_len = ada_aug_len | |
self.update_every = update_every | |
self.ada_update = 0 | |
self.ada_aug_buf = torch.tensor([0.0, 0.0], device=device) | |
self.r_t_stat = 0 | |
self.ada_aug_p = 0 | |
def tune(self, real_pred): | |
self.ada_aug_buf += torch.tensor( | |
(torch.sign(real_pred).sum().item(), real_pred.shape[0]), | |
device=real_pred.device, | |
) | |
self.ada_update += 1 | |
if self.ada_update % self.update_every == 0: | |
self.ada_aug_buf = reduce_sum(self.ada_aug_buf) | |
pred_signs, n_pred = self.ada_aug_buf.tolist() | |
self.r_t_stat = pred_signs / n_pred | |
if self.r_t_stat > self.ada_aug_target: | |
sign = 1 | |
else: | |
sign = -1 | |
self.ada_aug_p += sign * n_pred / self.ada_aug_len | |
self.ada_aug_p = min(1, max(0, self.ada_aug_p)) | |
self.ada_aug_buf.mul_(0) | |
self.ada_update = 0 | |
return self.ada_aug_p | |
SYM6 = ( | |
0.015404109327027373, | |
0.0034907120842174702, | |
-0.11799011114819057, | |
-0.048311742585633, | |
0.4910559419267466, | |
0.787641141030194, | |
0.3379294217276218, | |
-0.07263752278646252, | |
-0.021060292512300564, | |
0.04472490177066578, | |
0.0017677118642428036, | |
-0.007800708325034148, | |
) | |
def translate_mat(t_x, t_y, device="cpu"): | |
batch = t_x.shape[0] | |
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1) | |
translate = torch.stack((t_x, t_y), 1) | |
mat[:, :2, 2] = translate | |
return mat | |
def rotate_mat(theta, device="cpu"): | |
batch = theta.shape[0] | |
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1) | |
sin_t = torch.sin(theta) | |
cos_t = torch.cos(theta) | |
rot = torch.stack((cos_t, -sin_t, sin_t, cos_t), 1).view(batch, 2, 2) | |
mat[:, :2, :2] = rot | |
return mat | |
def scale_mat(s_x, s_y, device="cpu"): | |
batch = s_x.shape[0] | |
mat = torch.eye(3, device=device).unsqueeze(0).repeat(batch, 1, 1) | |
mat[:, 0, 0] = s_x | |
mat[:, 1, 1] = s_y | |
return mat | |
def translate3d_mat(t_x, t_y, t_z): | |
batch = t_x.shape[0] | |
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) | |
translate = torch.stack((t_x, t_y, t_z), 1) | |
mat[:, :3, 3] = translate | |
return mat | |
def rotate3d_mat(axis, theta): | |
batch = theta.shape[0] | |
u_x, u_y, u_z = axis | |
eye = torch.eye(3).unsqueeze(0) | |
cross = torch.tensor([(0, -u_z, u_y), (u_z, 0, -u_x), (-u_y, u_x, 0)]).unsqueeze(0) | |
outer = torch.tensor(axis) | |
outer = (outer.unsqueeze(1) * outer).unsqueeze(0) | |
sin_t = torch.sin(theta).view(-1, 1, 1) | |
cos_t = torch.cos(theta).view(-1, 1, 1) | |
rot = cos_t * eye + sin_t * cross + (1 - cos_t) * outer | |
eye_4 = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) | |
eye_4[:, :3, :3] = rot | |
return eye_4 | |
def scale3d_mat(s_x, s_y, s_z): | |
batch = s_x.shape[0] | |
mat = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) | |
mat[:, 0, 0] = s_x | |
mat[:, 1, 1] = s_y | |
mat[:, 2, 2] = s_z | |
return mat | |
def luma_flip_mat(axis, i): | |
batch = i.shape[0] | |
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) | |
axis = torch.tensor(axis + (0,)) | |
flip = 2 * torch.ger(axis, axis) * i.view(-1, 1, 1) | |
return eye - flip | |
def saturation_mat(axis, i): | |
batch = i.shape[0] | |
eye = torch.eye(4).unsqueeze(0).repeat(batch, 1, 1) | |
axis = torch.tensor(axis + (0,)) | |
axis = torch.ger(axis, axis) | |
saturate = axis + (eye - axis) * i.view(-1, 1, 1) | |
return saturate | |
def lognormal_sample(size, mean=0, std=1, device="cpu"): | |
return torch.empty(size, device=device).log_normal_(mean=mean, std=std) | |
def category_sample(size, categories, device="cpu"): | |
category = torch.tensor(categories, device=device) | |
sample = torch.randint(high=len(categories), size=(size,), device=device) | |
return category[sample] | |
def uniform_sample(size, low, high, device="cpu"): | |
return torch.empty(size, device=device).uniform_(low, high) | |
def normal_sample(size, mean=0, std=1, device="cpu"): | |
return torch.empty(size, device=device).normal_(mean, std) | |
def bernoulli_sample(size, p, device="cpu"): | |
return torch.empty(size, device=device).bernoulli_(p) | |
def random_mat_apply(p, transform, prev, eye, device="cpu"): | |
size = transform.shape[0] | |
select = bernoulli_sample(size, p, device=device).view(size, 1, 1) | |
select_transform = select * transform + (1 - select) * eye | |
return select_transform @ prev | |
def sample_affine(p, size, height, width, device="cpu"): | |
G = torch.eye(3, device=device).unsqueeze(0).repeat(size, 1, 1) | |
eye = G | |
# flip | |
param = category_sample(size, (0, 1)) | |
Gc = scale_mat(1 - 2.0 * param, torch.ones(size), device=device) | |
G = random_mat_apply(p, Gc, G, eye, device=device) | |
# print('flip', G, scale_mat(1 - 2.0 * param, torch.ones(size)), sep='\n') | |
# 90 rotate | |
#param = category_sample(size, (0, 3)) | |
#Gc = rotate_mat(-math.pi / 2 * param, device=device) | |
#G = random_mat_apply(p, Gc, G, eye, device=device) | |
# print('90 rotate', G, rotate_mat(-math.pi / 2 * param), sep='\n') | |
# integer translate | |
param = uniform_sample(size, -0.125, 0.125) | |
param_height = torch.round(param * height) / height | |
param_width = torch.round(param * width) / width | |
Gc = translate_mat(param_width, param_height, device=device) | |
G = random_mat_apply(p, Gc, G, eye, device=device) | |
# print('integer translate', G, translate_mat(param_width, param_height), sep='\n') | |
# isotropic scale | |
param = lognormal_sample(size, std=0.1 * math.log(2)) | |
Gc = scale_mat(param, param, device=device) | |
G = random_mat_apply(p, Gc, G, eye, device=device) | |
# print('isotropic scale', G, scale_mat(param, param), sep='\n') | |
p_rot = 1 - math.sqrt(1 - p) | |
# pre-rotate | |
param = uniform_sample(size, -math.pi * 0.25, math.pi * 0.25) | |
Gc = rotate_mat(-param, device=device) | |
G = random_mat_apply(p_rot, Gc, G, eye, device=device) | |
# print('pre-rotate', G, rotate_mat(-param), sep='\n') | |
# anisotropic scale | |
param = lognormal_sample(size, std=0.1 * math.log(2)) | |
Gc = scale_mat(param, 1 / param, device=device) | |
G = random_mat_apply(p, Gc, G, eye, device=device) | |
# print('anisotropic scale', G, scale_mat(param, 1 / param), sep='\n') | |
# post-rotate | |
param = uniform_sample(size, -math.pi * 0.25, math.pi * 0.25) | |
Gc = rotate_mat(-param, device=device) | |
G = random_mat_apply(p_rot, Gc, G, eye, device=device) | |
# print('post-rotate', G, rotate_mat(-param), sep='\n') | |
# fractional translate | |
param = normal_sample(size, std=0.125) | |
Gc = translate_mat(param, param, device=device) | |
G = random_mat_apply(p, Gc, G, eye, device=device) | |
# print('fractional translate', G, translate_mat(param, param), sep='\n') | |
return G | |
def sample_color(p, size): | |
C = torch.eye(4).unsqueeze(0).repeat(size, 1, 1) | |
eye = C | |
axis_val = 1 / math.sqrt(3) | |
axis = (axis_val, axis_val, axis_val) | |
# brightness | |
param = normal_sample(size, std=0.2) | |
Cc = translate3d_mat(param, param, param) | |
C = random_mat_apply(p, Cc, C, eye) | |
# contrast | |
param = lognormal_sample(size, std=0.5 * math.log(2)) | |
Cc = scale3d_mat(param, param, param) | |
C = random_mat_apply(p, Cc, C, eye) | |
# luma flip | |
param = category_sample(size, (0, 1)) | |
Cc = luma_flip_mat(axis, param) | |
C = random_mat_apply(p, Cc, C, eye) | |
# hue rotation | |
param = uniform_sample(size, -math.pi, math.pi) | |
Cc = rotate3d_mat(axis, param) | |
C = random_mat_apply(p, Cc, C, eye) | |
# saturation | |
param = lognormal_sample(size, std=1 * math.log(2)) | |
Cc = saturation_mat(axis, param) | |
C = random_mat_apply(p, Cc, C, eye) | |
return C | |
def make_grid(shape, x0, x1, y0, y1, device): | |
n, c, h, w = shape | |
grid = torch.empty(n, h, w, 3, device=device) | |
grid[:, :, :, 0] = torch.linspace(x0, x1, w, device=device) | |
grid[:, :, :, 1] = torch.linspace(y0, y1, h, device=device).unsqueeze(-1) | |
grid[:, :, :, 2] = 1 | |
return grid | |
def affine_grid(grid, mat): | |
n, h, w, _ = grid.shape | |
return (grid.view(n, h * w, 3) @ mat.transpose(1, 2)).view(n, h, w, 2) | |
def get_padding(G, height, width, kernel_size): | |
device = G.device | |
cx = (width - 1) / 2 | |
cy = (height - 1) / 2 | |
cp = torch.tensor( | |
[(-cx, -cy, 1), (cx, -cy, 1), (cx, cy, 1), (-cx, cy, 1)], device=device | |
) | |
cp = G @ cp.T | |
pad_k = kernel_size // 4 | |
pad = cp[:, :2, :].permute(1, 0, 2).flatten(1) | |
pad = torch.cat((-pad, pad)).max(1).values | |
pad = pad + torch.tensor([pad_k * 2 - cx, pad_k * 2 - cy] * 2, device=device) | |
pad = pad.max(torch.tensor([0, 0] * 2, device=device)) | |
pad = pad.min(torch.tensor([width - 1, height - 1] * 2, device=device)) | |
pad_x1, pad_y1, pad_x2, pad_y2 = pad.ceil().to(torch.int32) | |
return pad_x1, pad_x2, pad_y1, pad_y2 | |
def try_sample_affine_and_pad(img, p, kernel_size, G=None): | |
batch, _, height, width = img.shape | |
G_try = G | |
if G is None: | |
G_try = torch.inverse(sample_affine(p, batch, height, width)) | |
pad_x1, pad_x2, pad_y1, pad_y2 = get_padding(G_try, height, width, kernel_size) | |
img_pad = F.pad(img, (pad_x1, pad_x2, pad_y1, pad_y2), mode="reflect") | |
return img_pad, G_try, (pad_x1, pad_x2, pad_y1, pad_y2) | |
class GridSampleForward(autograd.Function): | |
def forward(ctx, input, grid): | |
out = F.grid_sample( | |
input, grid, mode="bilinear", padding_mode="zeros", align_corners=False | |
) | |
ctx.save_for_backward(input, grid) | |
return out | |
def backward(ctx, grad_output): | |
input, grid = ctx.saved_tensors | |
grad_input, grad_grid = GridSampleBackward.apply(grad_output, input, grid) | |
return grad_input, grad_grid | |
class GridSampleBackward(autograd.Function): | |
def forward(ctx, grad_output, input, grid): | |
op = torch._C._jit_get_operation("aten::grid_sampler_2d_backward") | |
grad_input, grad_grid = op(grad_output, input, grid, 0, 0, False) | |
ctx.save_for_backward(grid) | |
return grad_input, grad_grid | |
def backward(ctx, grad_grad_input, grad_grad_grid): | |
grid, = ctx.saved_tensors | |
grad_grad_output = None | |
if ctx.needs_input_grad[0]: | |
grad_grad_output = GridSampleForward.apply(grad_grad_input, grid) | |
return grad_grad_output, None, None | |
grid_sample = GridSampleForward.apply | |
def scale_mat_single(s_x, s_y): | |
return torch.tensor(((s_x, 0, 0), (0, s_y, 0), (0, 0, 1)), dtype=torch.float32) | |
def translate_mat_single(t_x, t_y): | |
return torch.tensor(((1, 0, t_x), (0, 1, t_y), (0, 0, 1)), dtype=torch.float32) | |
def random_apply_affine(img, p, G=None, antialiasing_kernel=SYM6): | |
kernel = antialiasing_kernel | |
len_k = len(kernel) | |
kernel = torch.as_tensor(kernel).to(img) | |
# kernel = torch.ger(kernel, kernel).to(img) | |
kernel_flip = torch.flip(kernel, (0,)) | |
img_pad, G, (pad_x1, pad_x2, pad_y1, pad_y2) = try_sample_affine_and_pad( | |
img, p, len_k, G | |
) | |
G_inv = ( | |
translate_mat_single((pad_x1 - pad_x2).item() / 2, (pad_y1 - pad_y2).item() / 2) | |
) | |
up_pad = ( | |
(len_k + 2 - 1) // 2, | |
(len_k - 2) // 2, | |
(len_k + 2 - 1) // 2, | |
(len_k - 2) // 2, | |
) | |
img_2x = upfirdn2d(img_pad, kernel.unsqueeze(0), up=(2, 1), pad=(*up_pad[:2], 0, 0)) | |
img_2x = upfirdn2d(img_2x, kernel.unsqueeze(1), up=(1, 2), pad=(0, 0, *up_pad[2:])) | |
G_inv = scale_mat_single(2, 2) @ G_inv @ scale_mat_single(1 / 2, 1 / 2) | |
G_inv = translate_mat_single(-0.5, -0.5) @ G_inv @ translate_mat_single(0.5, 0.5) | |
batch_size, channel, height, width = img.shape | |
pad_k = len_k // 4 | |
shape = (batch_size, channel, (height + pad_k * 2) * 2, (width + pad_k * 2) * 2) | |
G_inv = ( | |
scale_mat_single(2 / img_2x.shape[3], 2 / img_2x.shape[2]) | |
) | |
grid = F.affine_grid(G_inv[:, :2, :].to(img_2x), shape, align_corners=False) | |
img_affine = grid_sample(img_2x, grid) | |
d_p = -pad_k * 2 | |
down_pad = ( | |
d_p + (len_k - 2 + 1) // 2, | |
d_p + (len_k - 2) // 2, | |
d_p + (len_k - 2 + 1) // 2, | |
d_p + (len_k - 2) // 2, | |
) | |
img_down = upfirdn2d( | |
img_affine, kernel_flip.unsqueeze(0), down=(2, 1), pad=(*down_pad[:2], 0, 0) | |
) | |
img_down = upfirdn2d( | |
img_down, kernel_flip.unsqueeze(1), down=(1, 2), pad=(0, 0, *down_pad[2:]) | |
) | |
return img_down, G | |
def apply_color(img, mat): | |
batch = img.shape[0] | |
img = img.permute(0, 2, 3, 1) | |
mat_mul = mat[:, :3, :3].transpose(1, 2).view(batch, 1, 3, 3) | |
mat_add = mat[:, :3, 3].view(batch, 1, 1, 3) | |
img = img @ mat_mul + mat_add | |
img = img.permute(0, 3, 1, 2) | |
return img | |
def random_apply_color(img, p, C=None): | |
if C is None: | |
C = sample_color(p, img.shape[0]) | |
img = apply_color(img, C.to(img)) | |
return img, C | |
def augment(img, p, transform_matrix=(None, None)): | |
img, G = random_apply_affine(img, p, transform_matrix[0]) | |
img, C = random_apply_color(img, p, transform_matrix[1]) | |
return img, (G, C) | |