import cv2 import math import numpy as np import os.path as osp import torch import torch.utils.data as data from basicsr.data import degradations as degradations from basicsr.data.data_util import paths_from_folder from basicsr.data.transforms import augment from basicsr.utils import FileClient, get_root_logger, imfrombytes, img2tensor from basicsr.utils.registry import DATASET_REGISTRY from torchvision.transforms.functional import (adjust_brightness, adjust_contrast, adjust_hue, adjust_saturation, normalize) @DATASET_REGISTRY.register() class FFHQDegradationDataset(data.Dataset): """FFHQ dataset for GFPGAN. It reads high resolution images, and then generate low-quality (LQ) images on-the-fly. Args: opt (dict): Config for train datasets. It contains the following keys: dataroot_gt (str): Data root path for gt. io_backend (dict): IO backend type and other kwarg. mean (list | tuple): Image mean. std (list | tuple): Image std. use_hflip (bool): Whether to horizontally flip. Please see more options in the codes. """ def __init__(self, opt): super(FFHQDegradationDataset, self).__init__() self.opt = opt # file client (io backend) self.file_client = None self.io_backend_opt = opt['io_backend'] self.gt_folder = opt['dataroot_gt'] self.mean = opt['mean'] self.std = opt['std'] self.out_size = opt['out_size'] self.crop_components = opt.get('crop_components', False) # facial components self.eye_enlarge_ratio = opt.get('eye_enlarge_ratio', 1) # whether enlarge eye regions if self.crop_components: # load component list from a pre-process pth files self.components_list = torch.load(opt.get('component_path')) # file client (lmdb io backend) if self.io_backend_opt['type'] == 'lmdb': self.io_backend_opt['db_paths'] = self.gt_folder if not self.gt_folder.endswith('.lmdb'): raise ValueError(f"'dataroot_gt' should end with '.lmdb', but received {self.gt_folder}") with open(osp.join(self.gt_folder, 'meta_info.txt')) as fin: self.paths = [line.split('.')[0] for line in fin] else: # disk backend: scan file list from a folder self.paths = paths_from_folder(self.gt_folder) # degradation configurations self.blur_kernel_size = opt['blur_kernel_size'] self.kernel_list = opt['kernel_list'] self.kernel_prob = opt['kernel_prob'] self.blur_sigma = opt['blur_sigma'] self.downsample_range = opt['downsample_range'] self.noise_range = opt['noise_range'] self.jpeg_range = opt['jpeg_range'] # color jitter self.color_jitter_prob = opt.get('color_jitter_prob') self.color_jitter_pt_prob = opt.get('color_jitter_pt_prob') self.color_jitter_shift = opt.get('color_jitter_shift', 20) # to gray self.gray_prob = opt.get('gray_prob') logger = get_root_logger() logger.info(f'Blur: blur_kernel_size {self.blur_kernel_size}, sigma: [{", ".join(map(str, self.blur_sigma))}]') logger.info(f'Downsample: downsample_range [{", ".join(map(str, self.downsample_range))}]') logger.info(f'Noise: [{", ".join(map(str, self.noise_range))}]') logger.info(f'JPEG compression: [{", ".join(map(str, self.jpeg_range))}]') if self.color_jitter_prob is not None: logger.info(f'Use random color jitter. Prob: {self.color_jitter_prob}, shift: {self.color_jitter_shift}') if self.gray_prob is not None: logger.info(f'Use random gray. Prob: {self.gray_prob}') self.color_jitter_shift /= 255. @staticmethod def color_jitter(img, shift): """jitter color: randomly jitter the RGB values, in numpy formats""" jitter_val = np.random.uniform(-shift, shift, 3).astype(np.float32) img = img + jitter_val img = np.clip(img, 0, 1) return img @staticmethod def color_jitter_pt(img, brightness, contrast, saturation, hue): """jitter color: randomly jitter the brightness, contrast, saturation, and hue, in torch Tensor formats""" fn_idx = torch.randperm(4) for fn_id in fn_idx: if fn_id == 0 and brightness is not None: brightness_factor = torch.tensor(1.0).uniform_(brightness[0], brightness[1]).item() img = adjust_brightness(img, brightness_factor) if fn_id == 1 and contrast is not None: contrast_factor = torch.tensor(1.0).uniform_(contrast[0], contrast[1]).item() img = adjust_contrast(img, contrast_factor) if fn_id == 2 and saturation is not None: saturation_factor = torch.tensor(1.0).uniform_(saturation[0], saturation[1]).item() img = adjust_saturation(img, saturation_factor) if fn_id == 3 and hue is not None: hue_factor = torch.tensor(1.0).uniform_(hue[0], hue[1]).item() img = adjust_hue(img, hue_factor) return img def get_component_coordinates(self, index, status): """Get facial component (left_eye, right_eye, mouth) coordinates from a pre-loaded pth file""" components_bbox = self.components_list[f'{index:08d}'] if status[0]: # hflip # exchange right and left eye tmp = components_bbox['left_eye'] components_bbox['left_eye'] = components_bbox['right_eye'] components_bbox['right_eye'] = tmp # modify the width coordinate components_bbox['left_eye'][0] = self.out_size - components_bbox['left_eye'][0] components_bbox['right_eye'][0] = self.out_size - components_bbox['right_eye'][0] components_bbox['mouth'][0] = self.out_size - components_bbox['mouth'][0] # get coordinates locations = [] for part in ['left_eye', 'right_eye', 'mouth']: mean = components_bbox[part][0:2] mean[0] = mean[0] * 2 + 128 ######## mean[1] = mean[1] * 2 + 128 ######## half_len = components_bbox[part][2] * 2 ######## if 'eye' in part: half_len *= self.eye_enlarge_ratio loc = np.hstack((mean - half_len + 1, mean + half_len)) loc = torch.from_numpy(loc).float() locations.append(loc) return locations def __getitem__(self, index): if self.file_client is None: self.file_client = FileClient(self.io_backend_opt.pop('type'), **self.io_backend_opt) # load gt image # Shape: (h, w, c); channel order: BGR; image range: [0, 1], float32. gt_path = self.paths[index] img_bytes = self.file_client.get(gt_path) img_gt = imfrombytes(img_bytes, float32=True) # random horizontal flip img_gt, status = augment(img_gt, hflip=self.opt['use_hflip'], rotation=False, return_status=True) h, w, _ = img_gt.shape # get facial component coordinates if self.crop_components: locations = self.get_component_coordinates(index, status) loc_left_eye, loc_right_eye, loc_mouth = locations # ------------------------ generate lq image ------------------------ # # blur kernel = degradations.random_mixed_kernels( self.kernel_list, self.kernel_prob, self.blur_kernel_size, self.blur_sigma, self.blur_sigma, [-math.pi, math.pi], noise_range=None) img_lq = cv2.filter2D(img_gt, -1, kernel) # downsample scale = np.random.uniform(self.downsample_range[0], self.downsample_range[1]) img_lq = cv2.resize(img_lq, (int(w // scale), int(h // scale)), interpolation=cv2.INTER_LINEAR) # noise if self.noise_range is not None: img_lq = degradations.random_add_gaussian_noise(img_lq, self.noise_range) # jpeg compression if self.jpeg_range is not None: img_lq = degradations.random_add_jpg_compression(img_lq, self.jpeg_range) # resize to original size img_lq = cv2.resize(img_lq, (int(w // self.opt['scale']), int(h // self.opt['scale'])), interpolation=cv2.INTER_LINEAR) # random color jitter (only for lq) if self.color_jitter_prob is not None and (np.random.uniform() < self.color_jitter_prob): img_lq = self.color_jitter(img_lq, self.color_jitter_shift) # random to gray (only for lq) if self.gray_prob and np.random.uniform() < self.gray_prob: img_lq = cv2.cvtColor(img_lq, cv2.COLOR_BGR2GRAY) img_lq = np.tile(img_lq[:, :, None], [1, 1, 3]) if self.opt.get('gt_gray'): # whether convert GT to gray images img_gt = cv2.cvtColor(img_gt, cv2.COLOR_BGR2GRAY) img_gt = np.tile(img_gt[:, :, None], [1, 1, 3]) # repeat the color channels # BGR to RGB, HWC to CHW, numpy to tensor #img_gt, img_lq = img2tensor([img_gt, img_lq], bgr2rgb=True, float32=True) img_gt = img2tensor(img_gt, bgr2rgb=True, float32=True) img_lq = img2tensor(img_lq, bgr2rgb=True, float32=True) # random color jitter (pytorch version) (only for lq) if self.color_jitter_pt_prob is not None and (np.random.uniform() < self.color_jitter_pt_prob): brightness = self.opt.get('brightness', (0.5, 1.5)) contrast = self.opt.get('contrast', (0.5, 1.5)) saturation = self.opt.get('saturation', (0, 1.5)) hue = self.opt.get('hue', (-0.1, 0.1)) img_lq = self.color_jitter_pt(img_lq, brightness, contrast, saturation, hue) # round and clip img_lq = torch.clamp((img_lq * 255.0).round(), 0, 255) / 255. # normalize normalize(img_gt, self.mean, self.std, inplace=True) normalize(img_lq, self.mean, self.std, inplace=True) ''' if self.crop_components: return_dict = { 'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path, 'loc_left_eye': loc_left_eye, 'loc_right_eye': loc_right_eye, 'loc_mouth': loc_mouth } return return_dict else: return {'lq': img_lq, 'gt': img_gt, 'gt_path': gt_path} ''' return img_lq, img_gt def __len__(self): return len(self.paths)