import numpy as np import torch from torch.autograd import Variable from .get_nets import PNet, RNet, ONet from .box_utils import nms, calibrate_box, get_image_boxes, convert_to_square from .first_stage import run_first_stage def detect_faces(image, min_face_size=20.0, thresholds=[0.6, 0.7, 0.8], nms_thresholds=[0.7, 0.7, 0.7]): """ Arguments: image: an instance of PIL.Image. min_face_size: a float number. thresholds: a list of length 3. nms_thresholds: a list of length 3. Returns: two float numpy arrays of shapes [n_boxes, 4] and [n_boxes, 10], bounding boxes and facial landmarks. """ # LOAD MODELS pnet = PNet() rnet = RNet() onet = ONet() onet.eval() # BUILD AN IMAGE PYRAMID width, height = image.size min_length = min(height, width) min_detection_size = 12 factor = 0.707 # sqrt(0.5) # scales for scaling the image scales = [] # scales the image so that # minimum size that we can detect equals to # minimum face size that we want to detect m = min_detection_size / min_face_size min_length *= m factor_count = 0 while min_length > min_detection_size: scales.append(m * factor ** factor_count) min_length *= factor factor_count += 1 # STAGE 1 # it will be returned bounding_boxes = [] with torch.no_grad(): # run P-Net on different scales for s in scales: boxes = run_first_stage(image, pnet, scale=s, threshold=thresholds[0]) bounding_boxes.append(boxes) # collect boxes (and offsets, and scores) from different scales bounding_boxes = [i for i in bounding_boxes if i is not None] bounding_boxes = np.vstack(bounding_boxes) keep = nms(bounding_boxes[:, 0:5], nms_thresholds[0]) bounding_boxes = bounding_boxes[keep] # use offsets predicted by pnet to transform bounding boxes bounding_boxes = calibrate_box(bounding_boxes[:, 0:5], bounding_boxes[:, 5:]) # shape [n_boxes, 5] bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 2 img_boxes = get_image_boxes(bounding_boxes, image, size=24) img_boxes = torch.FloatTensor(img_boxes) output = rnet(img_boxes) offsets = output[0].data.numpy() # shape [n_boxes, 4] probs = output[1].data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[1])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,)) offsets = offsets[keep] keep = nms(bounding_boxes, nms_thresholds[1]) bounding_boxes = bounding_boxes[keep] bounding_boxes = calibrate_box(bounding_boxes, offsets[keep]) bounding_boxes = convert_to_square(bounding_boxes) bounding_boxes[:, 0:4] = np.round(bounding_boxes[:, 0:4]) # STAGE 3 img_boxes = get_image_boxes(bounding_boxes, image, size=48) if len(img_boxes) == 0: return [], [] img_boxes = torch.FloatTensor(img_boxes) output = onet(img_boxes) landmarks = output[0].data.numpy() # shape [n_boxes, 10] offsets = output[1].data.numpy() # shape [n_boxes, 4] probs = output[2].data.numpy() # shape [n_boxes, 2] keep = np.where(probs[:, 1] > thresholds[2])[0] bounding_boxes = bounding_boxes[keep] bounding_boxes[:, 4] = probs[keep, 1].reshape((-1,)) offsets = offsets[keep] landmarks = landmarks[keep] # compute landmark points width = bounding_boxes[:, 2] - bounding_boxes[:, 0] + 1.0 height = bounding_boxes[:, 3] - bounding_boxes[:, 1] + 1.0 xmin, ymin = bounding_boxes[:, 0], bounding_boxes[:, 1] landmarks[:, 0:5] = np.expand_dims(xmin, 1) + np.expand_dims(width, 1) * landmarks[:, 0:5] landmarks[:, 5:10] = np.expand_dims(ymin, 1) + np.expand_dims(height, 1) * landmarks[:, 5:10] bounding_boxes = calibrate_box(bounding_boxes, offsets) keep = nms(bounding_boxes, nms_thresholds[2], mode='min') bounding_boxes = bounding_boxes[keep] landmarks = landmarks[keep] return bounding_boxes, landmarks