import gradio as gr from transformers import pipeline # Load summarizer pipeline (T5 model, lightweight) summarizer = pipeline("summarization", model="t5-small") def summarize_text(text): summary = summarizer(text, max_length=150, min_length=30, do_sample=False) return summary[0]['summary_text'] # Gradio interface iface = gr.Interface( fn=summarize_text, inputs=gr.Textbox(lines=8, placeholder="Paste any article or text here..."), outputs=gr.Textbox(lines=8), # show full text without scrolling title="AI Text Summarizer 📖✨", description="Paste long text and get concise, clear summaries instantly!" ) if __name__ == "__main__": iface.launch()