Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,323 Bytes
dc780c5 837713d a07119c 837713d 85185da 837713d 2b1d793 837713d 85185da 1612a44 837713d 7163182 1612a44 7163182 1612a44 7163182 837713d a07119c 8d5a618 276c4d0 cf93985 a07119c 837713d 276c4d0 837713d dc780c5 837713d dc780c5 85185da dc780c5 85185da 7163182 5dd57f0 85185da 7163182 dc780c5 837713d cf93985 837713d efbe539 837713d 364343c 837713d cf93985 50a7cb9 cf93985 85185da 88dfd37 837713d cf93985 837713d a07119c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 |
import spaces
import gradio as gr
import torch
from transformers.models.speecht5.number_normalizer import EnglishNumberNormalizer
from string import punctuation
import re
from parler_tts import ParlerTTSForConditionalGeneration
from transformers import AutoTokenizer, AutoFeatureExtractor, set_seed
device = "cuda:0" if torch.cuda.is_available() else "cpu"
repo_id = "PHBJT/french_parler_tts_mini_v0.1"
model = ParlerTTSForConditionalGeneration.from_pretrained(repo_id).to(device)
tokenizer = AutoTokenizer.from_pretrained(repo_id)
feature_extractor = AutoFeatureExtractor.from_pretrained(repo_id)
SAMPLE_RATE = feature_extractor.sampling_rate
SEED = 42
default_text = "La voix humaine est un instrument de musique au-dessus de tous les autres."
default_description = "A male voice speaks slowly with a very noisy background, displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue."
examples = [
[
"La voix humaine est un instrument de musique au-dessus de tous les autres.",
"A male voice speaks slowly with a very noisy background, displaying a touch of expressiveness and animation. The sound is very distant, adding an air of intrigue.",
None,
],
[
"Tout ce qu'un homme est capable d'imaginer, d'autres hommes seront capables de le réaliser.",
"A male voice delivers a slightly expressive and animated speech with a moderate speed. The recording features a low-pitch voice, creating a close-sounding audio experience.",
None,
],
[
"La machine elle-même, si perfectionnée qu'on la suppose, n'est qu'un outil.",
"A male voice provides a monotone yet slightly fast delivery, with a very close recording that almost has no background noise.",
None,
],
[
"Le progrès fait naître plus de besoins qu'il n'en satisfait.",
"A female voice, in a very poor recording quality, delivers slightly expressive and animated words with a fast pace. There's a high level of background noise and a very distant-sounding reverberation. The voice is slightly higher pitched than average.",
None,
],
]
number_normalizer = EnglishNumberNormalizer()
def preprocess(text):
text = number_normalizer(text).strip()
text = text.replace("-", " ")
if text[-1] not in punctuation:
text = f"{text}."
abbreviations_pattern = r'\b[A-Z][A-Z\.]+\b'
def separate_abb(chunk):
chunk = chunk.replace(".","")
print(chunk)
return " ".join(chunk)
abbreviations = re.findall(abbreviations_pattern, text)
for abv in abbreviations:
if abv in text:
text = text.replace(abv, separate_abb(abv))
return text
@spaces.GPU
def gen_tts(text, description):
inputs = tokenizer(description.strip(), return_tensors="pt").to(device)
prompt = tokenizer(preprocess(text), return_tensors="pt").to(device)
set_seed(SEED)
generation = model.generate(
input_ids=inputs.input_ids, prompt_input_ids=prompt.input_ids, attention_mask=inputs.attention_mask, prompt_attention_mask=prompt.attention_mask, do_sample=True, temperature=1.0
)
audio_arr = generation.cpu().numpy().squeeze()
return SAMPLE_RATE, audio_arr
css = """
#share-btn-container {
display: flex;
padding-left: 0.5rem !important;
padding-right: 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
width: 13rem;
margin-top: 10px;
margin-left: auto;
flex: unset !important;
}
#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding-top: 0.25rem !important;
padding-bottom: 0.25rem !important;
right:0;
}
#share-btn * {
all: unset !important;
}
#share-btn-container div:nth-child(-n+2){
width: auto !important;
min-height: 0px !important;
}
#share-btn-container .wrap {
display: none !important;
}
"""
with gr.Blocks(css=css) as block:
gr.HTML(
"""
<div style="text-align: center; max-width: 700px; margin: 0 auto;">
<div
style="
display: inline-flex; align-items: center; gap: 0.8rem; font-size: 1.75rem;
"
>
<h1 style="font-weight: 900; margin-bottom: 7px; line-height: normal;">
French Parler-TTS 🗣️
</h1>
</div>
</div>
"""
)
gr.HTML(
f"""
<p><a href="https://github.com/huggingface/parler-tts">Parler-TTS</a> is a training and inference library for
high-fidelity text-to-speech (TTS) models.</p>
<p>The model demonstrated here, French Parler-TTS <a href="https://huggingface.co/PHBJT/french_parler_tts_mini_v0.1">Mini v0.1 French</a>,
has been fine-tuned on a French dataset. It generates high-quality speech with features that can be controlled using a simple text prompt (e.g. gender, background noise, speaking rate, pitch and reverberation).
Due to limitations on the dataset, this model might underperform for female voices (we recommend using male voices only).</p>
<p>By default, Parler-TTS generates 🎲 random male voice characteristics. To ensure 🎯 <b>speaker consistency</b> across generations, try to use consistent descriptions in your prompts.</p>
<p><b>Note:</b> do NOT specify the nationnality of the speaker it will cause inconsistent audio generation (do: "a male speaker", don't: "a french male speaker") </p>
<p><b>Important note:</b> this model does NOT work in english, it will generate incoherent audios. But you can still use the original Parler TTS model for that. </p>
"""
)
with gr.Row():
with gr.Column():
input_text = gr.Textbox(label="Input Text", lines=2, value=default_text, elem_id="input_text")
description = gr.Textbox(label="Description", lines=2, value=default_description, elem_id="input_description")
run_button = gr.Button("Generate Audio", variant="primary")
with gr.Column():
audio_out = gr.Audio(label="Parler-TTS generation", type="numpy", elem_id="audio_out", autoplay = True)
inputs = [input_text, description]
outputs = [audio_out]
run_button.click(fn=gen_tts, inputs=inputs, outputs=outputs, queue=True)
gr.Examples(examples=examples, fn=gen_tts, inputs=inputs, outputs=outputs, cache_examples=True)
gr.HTML(
"""
<p>Tips for ensuring good generation:
<ul>
<li>Include the term "very clear audio" to generate the highest quality audio, and "very noisy audio" for high levels of background noise</li>
<li>Punctuation can be used to control the prosody of the generations, e.g. use commas to add small breaks in speech</li>
<li>The remaining speech features (gender, speaking rate, pitch and reverberation) can be controlled directly through the prompt</li>
</ul>
</p>
"""
)
block.queue()
block.launch(share=True) |