import gradio from DeepFakeAI.uis.components import about, processors, execution, benchmark from DeepFakeAI.utilities import conditional_download def pre_check() -> bool: conditional_download('.assets/examples', [ 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/source.jpg', 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-240p.mp4', 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-360p.mp4', 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-540p.mp4', 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-720p.mp4', 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-1080p.mp4', 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-1440p.mp4', 'https://github.com/DeepFakeAI/DeepFakeAI-assets/releases/download/examples/target-2160p.mp4' ]) return True def render() -> gradio.Blocks: with gradio.Blocks() as layout: with gradio.Row(): with gradio.Column(scale = 2): about.render() processors.render() execution.render() with gradio.Column(scale= 5): benchmark.render() return layout def listen() -> None: processors.listen() execution.listen() benchmark.listen()