import threading from typing import Any, Optional, List import insightface import numpy import DeepFakeAI.globals from DeepFakeAI.typing import Frame, Face, FaceAnalyserDirection, FaceAnalyserAge, FaceAnalyserGender FACE_ANALYSER = None THREAD_LOCK = threading.Lock() def get_face_analyser() -> Any: global FACE_ANALYSER with THREAD_LOCK: if FACE_ANALYSER is None: FACE_ANALYSER = insightface.app.FaceAnalysis(name = 'buffalo_l', providers = DeepFakeAI.globals.execution_providers) FACE_ANALYSER.prepare(ctx_id = 0) return FACE_ANALYSER def clear_face_analyser() -> Any: global FACE_ANALYSER FACE_ANALYSER = None def get_one_face(frame : Frame, position : int = 0) -> Optional[Face]: many_faces = get_many_faces(frame) if many_faces: try: return many_faces[position] except IndexError: return many_faces[-1] return None def get_many_faces(frame : Frame) -> List[Face]: try: faces = get_face_analyser().get(frame) if DeepFakeAI.globals.face_analyser_direction: faces = sort_by_direction(faces, DeepFakeAI.globals.face_analyser_direction) if DeepFakeAI.globals.face_analyser_age: faces = filter_by_age(faces, DeepFakeAI.globals.face_analyser_age) if DeepFakeAI.globals.face_analyser_gender: faces = filter_by_gender(faces, DeepFakeAI.globals.face_analyser_gender) return faces except (AttributeError, ValueError): return [] def find_similar_faces(frame : Frame, reference_face : Face, face_distance : float) -> List[Face]: many_faces = get_many_faces(frame) similar_faces = [] if many_faces: for face in many_faces: if hasattr(face, 'normed_embedding') and hasattr(reference_face, 'normed_embedding'): current_face_distance = numpy.sum(numpy.square(face.normed_embedding - reference_face.normed_embedding)) if current_face_distance < face_distance: similar_faces.append(face) return similar_faces def sort_by_direction(faces : List[Face], direction : FaceAnalyserDirection) -> List[Face]: if direction == 'left-right': return sorted(faces, key = lambda face: face['bbox'][0]) if direction == 'right-left': return sorted(faces, key = lambda face: face['bbox'][0], reverse = True) if direction == 'top-bottom': return sorted(faces, key = lambda face: face['bbox'][1]) if direction == 'bottom-top': return sorted(faces, key = lambda face: face['bbox'][1], reverse = True) if direction == 'small-large': return sorted(faces, key = lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1])) if direction == 'large-small': return sorted(faces, key = lambda face: (face['bbox'][2] - face['bbox'][0]) * (face['bbox'][3] - face['bbox'][1]), reverse = True) return faces def filter_by_age(faces : List[Face], age : FaceAnalyserAge) -> List[Face]: filter_faces = [] for face in faces: if face['age'] < 13 and age == 'child': filter_faces.append(face) elif face['age'] < 19 and age == 'teen': filter_faces.append(face) elif face['age'] < 60 and age == 'adult': filter_faces.append(face) elif face['age'] > 59 and age == 'senior': filter_faces.append(face) return filter_faces def filter_by_gender(faces : List[Face], gender : FaceAnalyserGender) -> List[Face]: filter_faces = [] for face in faces: if face['gender'] == 1 and gender == 'male': filter_faces.append(face) if face['gender'] == 0 and gender == 'female': filter_faces.append(face) return filter_faces def get_faces_total(frame : Frame) -> int: return len(get_many_faces(frame))