import spaces import os import random import sys from typing import Sequence, Mapping, Any, Union import torch import numpy as np from PIL import Image # from comfy import model_management from nodes import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_1 from comfy_extras.nodes_custom_sampler import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_2 from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_3 from custom_nodes.ComfyUI_Comfyroll_CustomNodes.node_mappings import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_4 from comfy_extras.nodes_model_advanced import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_5 from comfy_extras.nodes_flux import NODE_CLASS_MAPPINGS as NODE_CLASS_MAPPINGS_6 from torchvision.transforms.functional import to_pil_image from PIL import Image import numpy as np import time from huggingface_hub import hf_hub_download token = os.getenv("HF_TKN") # Merge both mappings NODE_CLASS_MAPPINGS = {**NODE_CLASS_MAPPINGS_1, **NODE_CLASS_MAPPINGS_2, **NODE_CLASS_MAPPINGS_3, **NODE_CLASS_MAPPINGS_4, **NODE_CLASS_MAPPINGS_5, **NODE_CLASS_MAPPINGS_6} hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="flux1-dev.safetensors", local_dir="models/unet", token = token) hf_hub_download(repo_id="black-forest-labs/FLUX.1-dev", filename="ae.safetensors", local_dir="models/vae", token = token) hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="clip_l.safetensors", local_dir="models/text_encoders", token = token) hf_hub_download(repo_id="comfyanonymous/flux_text_encoders", filename="t5xxl_fp16.safetensors", local_dir="models/text_encoders", token = token) def preprocess_image_tensor(image): # If image has a batch dimension (shape: [1, C, H, W]), remove it. if image.ndim == 4 and image.shape[0] == 1: image = image.squeeze(0) # If image is in channels-first format (i.e. [C, H, W]) and has 3 or 4 channels, # convert it to channels-last format ([H, W, C]). if image.ndim == 3 and image.shape[0] in [1, 3, 4]: image = image.permute(1, 2, 0) # Ensure the image values are between 0 and 1. Then scale them to [0, 255]. image = image.detach().cpu().numpy() image = np.clip(image, 0, 1) * 255 # Convert to unsigned 8-bit integer type. image = image.astype(np.uint8) return image def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: """Returns the value at the given index of a sequence or mapping. If the object is a sequence (like list or string), returns the value at the given index. If the object is a mapping (like a dictionary), returns the value at the index-th key. Some return a dictionary, in these cases, we look for the "results" key Args: obj (Union[Sequence, Mapping]): The object to retrieve the value from. index (int): The index of the value to retrieve. Returns: Any: The value at the given index. Raises: IndexError: If the index is o of bounds for the object and the object is not a mapping. """ try: return obj[index] except KeyError: return obj["result"][index] def find_path(name: str, path: str = None) -> str: """ Recursively looks at parent folders starting from the given path until it finds the given name. Returns the path as a Path object if found, or None otherwise. """ # If no path is given, use the current working directory if path is None: path = os.getcwd() # Check if the current directory contains the name if name in os.listdir(path): path_name = os.path.join(path, name) print(f"{name} found: {path_name}") return path_name # Get the parent directory parent_directory = os.path.dirname(path) # If the parent directory is the same as the current directory, we've reached the root and stop the search if parent_directory == path: return None # Recursively call the function with the parent directory return find_path(name, parent_directory) def add_comfyui_directory_to_sys_path() -> None: """ Add 'ComfyUI' to the sys.path """ comfyui_path = find_path("ComfyUI") if comfyui_path is not None and os.path.isdir(comfyui_path): sys.path.append(comfyui_path) print(f"'{comfyui_path}' added to sys.path") def add_extra_model_paths() -> None: """ Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. """ try: from main import load_extra_path_config except ImportError: print( "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." ) from utils.extra_config import load_extra_path_config extra_model_paths = find_path("extra_model_paths.yaml") if extra_model_paths is not None: load_extra_path_config(extra_model_paths) else: print("Could not find the extra_model_paths config file.") def import_custom_nodes() -> None: """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS This function sets up a new asyncio event loop, initializes the PromptServer, creates a PromptQueue, and initializes the custom nodes. """ import asyncio import execution from nodes import init_extra_nodes import server # Creating a new event loop and setting it as the default loop loop = asyncio.new_event_loop() asyncio.set_event_loop(loop) # Creating an instance of PromptServer with the loop server_instance = server.PromptServer(loop) execution.PromptQueue(server_instance) # Initializing custom nodes init_extra_nodes() def preprocess_image_tensor(image): # If image has a batch dimension (shape: [1, C, H, W]), remove it. if image.ndim == 4 and image.shape[0] == 1: image = image.squeeze(0) # If image is in channels-first format (i.e. [C, H, W]) and has 3 or 4 channels, # convert it to channels-last format ([H, W, C]). if image.ndim == 3 and image.shape[0] in [1, 3, 4]: image = image.permute(1, 2, 0) # Ensure the image values are between 0 and 1. Then scale them to [0, 255]. image = image.detach().cpu().numpy() image = np.clip(image, 0, 1) * 255 # Convert to unsigned 8-bit integer type. image = image.astype(np.uint8) return image add_comfyui_directory_to_sys_path() import_custom_nodes() # add_extra_model_paths() dualcliploader = NODE_CLASS_MAPPINGS["DualCLIPLoader"]() dualcliploader_11 = dualcliploader.load_clip( clip_name1="t5xxl_fp16.safetensors", clip_name2="clip_l.safetensors", type="flux", device="default", ) cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() cliptextencode_6 = cliptextencode.encode( text="Photo on a small glass panel. Color. Photo of trees with a body of water in the front and moutain in the background.", clip=get_value_at_index(dualcliploader_11, 0), ) vaeloader = NODE_CLASS_MAPPINGS["VAELoader"]() vaeloader_10 = vaeloader.load_vae(vae_name="ae.safetensors") unetloader = NODE_CLASS_MAPPINGS["UNETLoader"]() unetloader_12 = unetloader.load_unet( unet_name="flux1-dev.safetensors", weight_dtype="default" ) ksamplerselect = NODE_CLASS_MAPPINGS["KSamplerSelect"]() ksamplerselect_16 = ksamplerselect.get_sampler(sampler_name="dpmpp_2m") # randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() # randomnoise_25 = randomnoise.get_noise(noise_seed='42') loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only( lora_name='lora_weight_rank_32_alpha_32.safetensors', strength_model=1, model=get_value_at_index(unetloader_12, 0), ) cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]() cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio( width=1024, height=1024, aspect_ratio="4:3 landscape 1152x896", swap_dimensions="Off", upscale_factor=1.5, batch_size=1, ) modelsamplingflux = NODE_CLASS_MAPPINGS["ModelSamplingFlux"]() fluxguidance = NODE_CLASS_MAPPINGS["FluxGuidance"]() basicguider = NODE_CLASS_MAPPINGS["BasicGuider"]() basicscheduler = NODE_CLASS_MAPPINGS["BasicScheduler"]() samplercustomadvanced = NODE_CLASS_MAPPINGS["SamplerCustomAdvanced"]() vaedecode = NODE_CLASS_MAPPINGS["VAEDecode"]() saveimage = NODE_CLASS_MAPPINGS["SaveImage"]() # def model_loading(): # model_loaders = [dualcliploader_11, vaeloader_10, unetloader_12, loraloadermodelonly_72] # valid_models = [ # getattr(loader[0], 'patcher', loader[0]) # for loader in model_loaders # if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict) # ] # #Load the models # # model_management.load_models_gpu(valid_models) def generate_image(prompt, guidance_scale, aspect_ratio, seed, num_inference_steps, lora_weight, ): # print(seed) cliptextencode = NODE_CLASS_MAPPINGS["CLIPTextEncode"]() cliptextencode_6 = cliptextencode.encode( text=prompt, clip=get_value_at_index(dualcliploader_11, 0), ) cr_sdxl_aspect_ratio = NODE_CLASS_MAPPINGS["CR SDXL Aspect Ratio"]() cr_sdxl_aspect_ratio_85 = cr_sdxl_aspect_ratio.Aspect_Ratio( width=1024, height=1024, aspect_ratio=aspect_ratio, swap_dimensions="Off", upscale_factor=1.5, batch_size=1, ) loraloadermodelonly = NODE_CLASS_MAPPINGS["LoraLoaderModelOnly"]() loraloadermodelonly_72 = loraloadermodelonly.load_lora_model_only( lora_name=lora_weight, strength_model=1, model=get_value_at_index(unetloader_12, 0), ) randomnoise = NODE_CLASS_MAPPINGS["RandomNoise"]() randomnoise_25 = randomnoise.get_noise(noise_seed=str(seed)) with torch.inference_mode(): for q in range(1): modelsamplingflux_61 = modelsamplingflux.patch( max_shift=1.15, base_shift=0.5, width=get_value_at_index(cr_sdxl_aspect_ratio_85, 0), height=get_value_at_index(cr_sdxl_aspect_ratio_85, 1), model=get_value_at_index(loraloadermodelonly_72, 0), ) fluxguidance_60 = fluxguidance.append( guidance=guidance_scale, conditioning=get_value_at_index(cliptextencode_6, 0) ) basicguider_22 = basicguider.get_guider( model=get_value_at_index(modelsamplingflux_61, 0), conditioning=get_value_at_index(fluxguidance_60, 0), ) basicscheduler_17 = basicscheduler.get_sigmas( scheduler="sgm_uniform", steps=num_inference_steps, denoise=1, model=get_value_at_index(modelsamplingflux_61, 0), ) samplercustomadvanced_13 = samplercustomadvanced.sample( noise=get_value_at_index(randomnoise_25, 0), guider=get_value_at_index(basicguider_22, 0), sampler=get_value_at_index(ksamplerselect_16, 0), sigmas=get_value_at_index(basicscheduler_17, 0), latent_image=get_value_at_index(cr_sdxl_aspect_ratio_85, 4), ) vaedecode_8 = vaedecode.decode( samples=get_value_at_index(samplercustomadvanced_13, 0), vae=get_value_at_index(vaeloader_10, 0), ) # saveimage_9 = saveimage.save_images( # filename_prefix="image", images=get_value_at_index(vaedecode_8, 0) # ) image_tensor = get_value_at_index(vaedecode_8, 0) preprocessed_image = preprocess_image_tensor(image_tensor) pil_image = Image.fromarray(preprocessed_image) return pil_image, seed