lev1's picture
auto anotators
f7ac35e
raw
history blame
5.15 kB
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
from annotator.uniformer.mmcv.image import imread, imwrite
from .color import color_val
def imshow(img, win_name='', wait_time=0):
"""Show an image.
Args:
img (str or ndarray): The image to be displayed.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
"""
cv2.imshow(win_name, imread(img))
if wait_time == 0: # prevent from hanging if windows was closed
while True:
ret = cv2.waitKey(1)
closed = cv2.getWindowProperty(win_name, cv2.WND_PROP_VISIBLE) < 1
# if user closed window or if some key pressed
if closed or ret != -1:
break
else:
ret = cv2.waitKey(wait_time)
def imshow_bboxes(img,
bboxes,
colors='green',
top_k=-1,
thickness=1,
show=True,
win_name='',
wait_time=0,
out_file=None):
"""Draw bboxes on an image.
Args:
img (str or ndarray): The image to be displayed.
bboxes (list or ndarray): A list of ndarray of shape (k, 4).
colors (list[str or tuple or Color]): A list of colors.
top_k (int): Plot the first k bboxes only if set positive.
thickness (int): Thickness of lines.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str, optional): The filename to write the image.
Returns:
ndarray: The image with bboxes drawn on it.
"""
img = imread(img)
img = np.ascontiguousarray(img)
if isinstance(bboxes, np.ndarray):
bboxes = [bboxes]
if not isinstance(colors, list):
colors = [colors for _ in range(len(bboxes))]
colors = [color_val(c) for c in colors]
assert len(bboxes) == len(colors)
for i, _bboxes in enumerate(bboxes):
_bboxes = _bboxes.astype(np.int32)
if top_k <= 0:
_top_k = _bboxes.shape[0]
else:
_top_k = min(top_k, _bboxes.shape[0])
for j in range(_top_k):
left_top = (_bboxes[j, 0], _bboxes[j, 1])
right_bottom = (_bboxes[j, 2], _bboxes[j, 3])
cv2.rectangle(
img, left_top, right_bottom, colors[i], thickness=thickness)
if show:
imshow(img, win_name, wait_time)
if out_file is not None:
imwrite(img, out_file)
return img
def imshow_det_bboxes(img,
bboxes,
labels,
class_names=None,
score_thr=0,
bbox_color='green',
text_color='green',
thickness=1,
font_scale=0.5,
show=True,
win_name='',
wait_time=0,
out_file=None):
"""Draw bboxes and class labels (with scores) on an image.
Args:
img (str or ndarray): The image to be displayed.
bboxes (ndarray): Bounding boxes (with scores), shaped (n, 4) or
(n, 5).
labels (ndarray): Labels of bboxes.
class_names (list[str]): Names of each classes.
score_thr (float): Minimum score of bboxes to be shown.
bbox_color (str or tuple or :obj:`Color`): Color of bbox lines.
text_color (str or tuple or :obj:`Color`): Color of texts.
thickness (int): Thickness of lines.
font_scale (float): Font scales of texts.
show (bool): Whether to show the image.
win_name (str): The window name.
wait_time (int): Value of waitKey param.
out_file (str or None): The filename to write the image.
Returns:
ndarray: The image with bboxes drawn on it.
"""
assert bboxes.ndim == 2
assert labels.ndim == 1
assert bboxes.shape[0] == labels.shape[0]
assert bboxes.shape[1] == 4 or bboxes.shape[1] == 5
img = imread(img)
img = np.ascontiguousarray(img)
if score_thr > 0:
assert bboxes.shape[1] == 5
scores = bboxes[:, -1]
inds = scores > score_thr
bboxes = bboxes[inds, :]
labels = labels[inds]
bbox_color = color_val(bbox_color)
text_color = color_val(text_color)
for bbox, label in zip(bboxes, labels):
bbox_int = bbox.astype(np.int32)
left_top = (bbox_int[0], bbox_int[1])
right_bottom = (bbox_int[2], bbox_int[3])
cv2.rectangle(
img, left_top, right_bottom, bbox_color, thickness=thickness)
label_text = class_names[
label] if class_names is not None else f'cls {label}'
if len(bbox) > 4:
label_text += f'|{bbox[-1]:.02f}'
cv2.putText(img, label_text, (bbox_int[0], bbox_int[1] - 2),
cv2.FONT_HERSHEY_COMPLEX, font_scale, text_color)
if show:
imshow(img, win_name, wait_time)
if out_file is not None:
imwrite(img, out_file)
return img