from fastapi import FastAPI, File, UploadFile, HTTPException from PIL import Image import numpy as np import pickle from io import BytesIO import math def load_model(): with open('som.pkl', 'rb') as fid: som = pickle.load(fid) MM = np.loadtxt('matrizMM.txt', delimiter=" ") return som, MM def sobel(I): m, n = I.shape Gx = np.zeros([m-2, n-2], np.float32) Gy = np.zeros([m-2, n-2], np.float32) gx = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]] gy = [[1, 2, 1], [0, 0, 0], [-1, -2, -1]] for j in range(1, m-2): for i in range(1, n-2): Gx[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gx)) Gy[j-1, i-1] = sum(sum(I[j-1:j+2, i-1:i+2] * gy)) return Gx, Gy def medfilt2(G, d=3): m, n = G.shape temp = np.zeros([m+2*(d//2), n+2*(d//2)], np.float32) salida = np.zeros([m, n], np.float32) temp[1:m+1, 1:n+1] = G for i in range(1, m): for j in range(1, n): A = np.asarray(temp[i-1:i+2, j-1:j+2]).reshape(-1) salida[i-1, j-1] = np.sort(A)[d+1] return salida def orientacion(patron, w): Gx, Gy = sobel(patron) Gx = medfilt2(Gx) Gy = medfilt2(Gy) m, n = Gx.shape mOrientaciones = np.zeros([m//w, n//w], np.float32) for i in range(m//w): for j in range(n//w): YY = sum(sum(2*Gx[i*w:(i+1)*w, j:j+1] * Gy[i*w:(i+1)*w, j:j+1])) XX = sum(sum(Gx[i*w:(i+1)*w, j:j+1]**2 - Gy[i*w:(i+1)*w, j:j+1]**2)) mOrientaciones[i, j] = (0.5 * math.atan2(YY, XX) + math.pi / 2.0) * (180.0 / math.pi) return mOrientaciones def representativo(imarray): imarray = np.squeeze(imarray) m, n = imarray.shape patron = imarray[1:m-1, 1:n-1] EE = orientacion(patron, 14) return np.asarray(EE).reshape(-1) app = FastAPI() som, MM = load_model() @app.post("/predict/") async def predict(file: UploadFile = File(...)): try: contents = await file.read() image = Image.open(BytesIO(contents)).convert('L') image = np.asarray(image) if image.shape != (256, 256): raise ValueError("La imagen debe ser de tamaño 256x256.") image = image.reshape(256, 256, 1) print(f"Imagen convertida a matriz: {image.shape}") representative_data = representativo(image) print(f"Datos representativos de la imagen: {representative_data.shape}") representative_data = representative_data.reshape(1, -1) w = som.winner(representative_data) print(f"Índice ganador del SOM: {w}") prediction = MM[w] print(f"Predicción: {prediction}") return {"prediction": prediction} except Exception as e: raise HTTPException(status_code=500, detail=str(e))