import cv2 import numpy as np import matplotlib.pyplot as plt import matplotlib.patches as patches def plot_depth_with_boxes(depth_map, depth_data): """ Plots the depth map with bounding boxes overlayed. Args: depth_map (numpy.ndarray): The depth map to visualize. depth_data (pandas.DataFrame): DataFrame containing bounding box coordinates, depth statistics, and class labels. """ # Normalize the depth map for better visualization depth_map_normalized = cv2.normalize(depth_map, None, 0, 255, cv2.NORM_MINMAX).astype(np.uint8) # Create a figure and axis fig, ax = plt.subplots(1, figsize=(12, 6)) # Display the depth map ax.imshow(depth_map_normalized, cmap='plasma') # You can change the colormap as desired ax.axis('off') # Hide the axes # Loop through the DataFrame and add rectangles for index, row in depth_data.iterrows(): xmin, ymin, xmax, ymax = row[['xmin', 'ymin', 'xmax', 'ymax']] class_label = row['class'] score = row['depth_mean'] # or whichever statistic you prefer to display # Create a rectangle patch rect = patches.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, linewidth=2, edgecolor='yellow', facecolor='none') # Add the rectangle to the plot ax.add_patch(rect) # Add a text label ax.text(xmin, ymin - 5, f'{class_label}: {score:.2f}', color='white', fontsize=12, weight='bold') plt.title('Depth Map with Object Detection Bounding Boxes', fontsize=16) plt.show()