#!/usr/bin/env python # coding: utf-8 # In[37]: import gradio as gr import hopsworks import joblib import pandas as pd import numpy as np import folium import sklearn.preprocessing as proc import json import time from datetime import timedelta, datetime from branca.element import Figure from functions import get_weather_data, get_weather_df, get_weather_json_quick def greet(name): X = pd.DataFrame() for i in range(14): # Get, rename column and rescalef next_day_date = datetime.today() - timedelta(days=i) next_day = next_day_date.strftime ('%Y-%m-%d') json = get_weather_json_quick(next_day) temp = get_weather_data(json) X = X.append(temp, ignore_index=True) # In[38]: X.head() X.columns.values.tolist() # In[39]: X.drop('preciptype', inplace = True, axis = 1) X.drop('severerisk', inplace = True, axis = 1) X.drop('stations', inplace = True, axis = 1) X.drop('sunrise', inplace = True, axis = 1) X.drop('sunset', inplace = True, axis = 1) X.drop('moonphase', inplace = True, axis = 1) X.drop('description', inplace = True, axis = 1) X.drop('icon', inplace = True, axis = 1) X.drop('datetime', inplace = True, axis = 1) # In[40]: X.head() # In[41]: X = X.rename(columns={'sunriseEpoch':'pm25'}) X = X.rename(columns={'sunsetEpoch':'pm10'}) X = X.rename(columns={'source':'o3'}) X = X.rename(columns={'normal':'aqi'}) X = X.rename(columns={'datetimeEpoch':'city'}) # In[42]: X.head() # In[43]: # X = X.drop(columns = ['conditions', "pm25", "pm10", "o3", "aqi"]) X = X.drop(columns = ['conditions', "pm25", "pm10", "o3"]) X.insert(0,"aqi",0) X.insert(0,"o3",0) X.insert(0,"pm10",0) X.insert(0,"pm25",0) X.insert(27,"conditions",0) # In[44]: X.head() # In[46]: preds = model.predict(X) # In[51]: print(preds) # In[53]: str1 = "" for x in range(8): if(x != 0): str1 += (datetime.now() + timedelta(days=x)).strftime('%Y-%m-%d') + " predicted aqi: " + str(int(preds[x]))+"\n" print(str1) return str1 # In[ ]: project = hopsworks.login() mr = project.get_model_registry() # In[50]: model = mr.get_model("gradient_boost_model",version = 4) model_dir = model.download() model = joblib.load(model_dir + "/model.pkl") demo = gr.Interface(fn=greet, inputs="text", outputs="text") if __name__ == "__main__": demo.launch()