import os import shutil import gradio as gr from huggingface_hub import HfApi, whoami, ModelCard, model_info from gradio_huggingfacehub_search import HuggingfaceHubSearch from textwrap import dedent from pathlib import Path from tempfile import TemporaryDirectory from huggingface_hub.file_download import repo_folder_name from optimum.exporters import TasksManager from optimum.intel.utils.modeling_utils import _find_files_matching_pattern from optimum.intel import ( OVModelForAudioClassification, OVModelForCausalLM, OVModelForFeatureExtraction, OVModelForImageClassification, OVModelForMaskedLM, OVModelForQuestionAnswering, OVModelForSeq2SeqLM, OVModelForSequenceClassification, OVModelForTokenClassification, OVStableDiffusionPipeline, OVStableDiffusionXLPipeline, OVLatentConsistencyModelPipeline, OVWeightQuantizationConfig, ) from diffusers import ConfigMixin _HEAD_TO_AUTOMODELS = { "feature-extraction": "OVModelForFeatureExtraction", "fill-mask": "OVModelForMaskedLM", "text-generation": "OVModelForCausalLM", "text-classification": "OVModelForSequenceClassification", "token-classification": "OVModelForTokenClassification", "question-answering": "OVModelForQuestionAnswering", "image-classification": "OVModelForImageClassification", "audio-classification": "OVModelForAudioClassification", "stable-diffusion": "OVStableDiffusionPipeline", "stable-diffusion-xl": "OVStableDiffusionXLPipeline", "latent-consistency": "OVLatentConsistencyModelPipeline", } def quantize_model( model_id: str, dtype: str, calibration_dataset: str, ratio: str, private_repo: bool, overwritte: bool, oauth_token: gr.OAuthToken, ): if oauth_token.token is None: return "You must be logged in to use this space" if not model_id: return f"### Invalid input 🐞 Please specify a model name, got {model_id}" try: model_name = model_id.split("/")[-1] username = whoami(oauth_token.token)["name"] w_t = dtype.replace("-", "") suffix = f"{w_t}" if model_name.endswith("openvino") else f"openvino-{w_t}" new_repo_id = f"{username}/{model_name}-{suffix}" library_name = TasksManager.infer_library_from_model(model_id, token=oauth_token.token) if library_name == "diffusers": ConfigMixin.config_name = "model_index.json" class_name = ConfigMixin.load_config(model_id, token=oauth_token.token)["_class_name"].lower() if "xl" in class_name: task = "stable-diffusion-xl" elif "consistency" in class_name: task = "latent-consistency" else: task = "stable-diffusion" else: task = TasksManager.infer_task_from_model(model_id, token=oauth_token.token) if task == "text2text-generation": return "Export of Seq2Seq models is currently disabled." if task not in _HEAD_TO_AUTOMODELS: return f"The task '{task}' is not supported, only {_HEAD_TO_AUTOMODELS.keys()} tasks are supported" auto_model_class = _HEAD_TO_AUTOMODELS[task] ov_files = _find_files_matching_pattern( model_id, pattern=r"(.*)?openvino(.*)?\_model.xml", use_auth_token=oauth_token.token, ) export = len(ov_files) == 0 if calibration_dataset == "None": calibration_dataset = None is_int8 = dtype == "8-bit" # if library_name == "diffusers": # quant_method = "hybrid" if not is_int8 and calibration_dataset is not None: quant_method = "awq" else: if calibration_dataset is not None: print("Default quantization was selected, calibration dataset won't be used") quant_method = "default" quantization_config = OVWeightQuantizationConfig( bits=8 if is_int8 else 4, quant_method=quant_method, dataset=None if quant_method=="default" else calibration_dataset, ratio=1.0 if is_int8 else ratio, num_samples=None if quant_method=="default" else 20, ) api = HfApi(token=oauth_token.token) if api.repo_exists(new_repo_id) and not overwritte: return f"Model {new_repo_id} already exist, please tick the overwritte box to push on an existing repository" with TemporaryDirectory() as d: folder = os.path.join(d, repo_folder_name(repo_id=model_id, repo_type="models")) os.makedirs(folder) try: api.snapshot_download(repo_id=model_id, local_dir=folder, allow_patterns=["*.json"]) ov_model = eval(auto_model_class).from_pretrained( model_id, export=export, cache_dir=folder, token=oauth_token.token, quantization_config=quantization_config ) ov_model.save_pretrained(folder) new_repo_url = api.create_repo(repo_id=new_repo_id, exist_ok=True, private=private_repo) new_repo_id = new_repo_url.repo_id print("Repository created successfully!", new_repo_url) folder = Path(folder) for dir_name in ( "", "vae_encoder", "vae_decoder", "text_encoder", "text_encoder_2", "unet", "tokenizer", "tokenizer_2", "scheduler", "feature_extractor", ): if not (folder / dir_name).is_dir(): continue for file_path in (folder / dir_name).iterdir(): if file_path.is_file(): try: api.upload_file( path_or_fileobj=file_path, path_in_repo=os.path.join(dir_name, file_path.name), repo_id=new_repo_id, ) except Exception as e: return f"Error uploading file {file_path}: {e}" try: card = ModelCard.load(model_id, token=oauth_token.token) except: card = ModelCard("") if card.data.tags is None: card.data.tags = [] if "openvino" not in card.data.tags: card.data.tags.append("openvino") card.data.tags.append("nncf") card.data.tags.append(dtype) card.data.base_model = model_id card.text = dedent( f""" This model is a quantized version of [`{model_id}`](https://huggingface.co/{model_id}) and is converted to the OpenVINO format. This model was obtained via the [nncf-quantization](https://huggingface.co/spaces/echarlaix/nncf-quantization) space with [optimum-intel](https://github.com/huggingface/optimum-intel). First make sure you have `optimum-intel` installed: ```bash pip install optimum[openvino] ``` To load your model you can do as follows: ```python from optimum.intel import {auto_model_class} model_id = "{new_repo_id}" model = {auto_model_class}.from_pretrained(model_id) ``` """ ) card_path = os.path.join(folder, "README.md") card.save(card_path) api.upload_file( path_or_fileobj=card_path, path_in_repo="README.md", repo_id=new_repo_id, ) return f"This model was successfully quantized, find it under your repository {new_repo_url}" finally: shutil.rmtree(folder, ignore_errors=True) except Exception as e: return f"### Error: {e}" DESCRIPTION = """ This Space uses [Optimum Intel](https://github.com/huggingface/optimum-intel) to automatically apply NNCF [Weight Only Quantization](https://huggingface.co/docs/optimum/main/en/intel/openvino/optimization) (WOQ) on your model and convert it to the [OpenVINO format](https://docs.openvino.ai/2024/documentation/openvino-ir-format.html) if not already. After conversion, a repository will be pushed under your namespace with the resulting model. The list of the supported architectures can be found in the [documentation](https://huggingface.co/docs/optimum/main/en/intel/openvino/models) """ model_id = HuggingfaceHubSearch( label="Hub Model ID", placeholder="Search for model id on the hub", search_type="model", ) dtype = gr.Dropdown( ["8-bit", "4-bit"], value="8-bit", label="Weights precision", filterable=False, visible=True, ) """ quant_method = gr.Dropdown( ["default", "awq", "hybrid"], value="default", label="Quantization method", filterable=False, visible=True, ) """ calibration_dataset = gr.Dropdown( [ "None", "wikitext2", "c4", "c4-new", "conceptual_captions", "laion/220k-GPT4Vision-captions-from-LIVIS", "laion/filtered-wit", ], value="None", label="Calibration dataset", filterable=False, visible=True, ) ratio = gr.Slider( label="Ratio", info="Parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization", minimum=0.0, maximum=1.0, step=0.1, value=1.0, ) private_repo = gr.Checkbox( value=False, label="Private repository", info="Create a private repository instead of a public one", ) overwritte = gr.Checkbox( value=False, label="Overwrite repository content", info="Enable pushing files on existing repositories, potentially overwriting existing files", ) interface = gr.Interface( fn=quantize_model, inputs=[ model_id, dtype, calibration_dataset, ratio, private_repo, overwritte, ], outputs=[ gr.Markdown(label="output"), ], title="Quantize your model with NNCF", description=DESCRIPTION, api_name=False, ) with gr.Blocks() as demo: gr.Markdown("You must be logged in to use this space") gr.LoginButton(min_width=250) interface.render() demo.launch()