# coding=utf-8 # Copyright 2020 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # pylint: skip-file """Common layers for defining score networks. """ import math import string from functools import partial import torch.nn as nn import torch import torch.nn.functional as F import numpy as np from .normalization import ConditionalInstanceNorm2dPlus def get_act(config): """Get activation functions from the config file.""" if config == 'elu': return nn.ELU() elif config == 'relu': return nn.ReLU() elif config == 'lrelu': return nn.LeakyReLU(negative_slope=0.2) elif config == 'swish': return nn.SiLU() else: raise NotImplementedError('activation function does not exist!') def ncsn_conv1x1(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=0): """1x1 convolution. Same as NCSNv1/v2.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=bias, dilation=dilation, padding=padding) init_scale = 1e-10 if init_scale == 0 else init_scale conv.weight.data *= init_scale conv.bias.data *= init_scale return conv def variance_scaling(scale, mode, distribution, in_axis=1, out_axis=0, dtype=torch.float32, device='cpu'): """Ported from JAX. """ def _compute_fans(shape, in_axis=1, out_axis=0): receptive_field_size = np.prod(shape) / shape[in_axis] / shape[out_axis] fan_in = shape[in_axis] * receptive_field_size fan_out = shape[out_axis] * receptive_field_size return fan_in, fan_out def init(shape, dtype=dtype, device=device): fan_in, fan_out = _compute_fans(shape, in_axis, out_axis) if mode == "fan_in": denominator = fan_in elif mode == "fan_out": denominator = fan_out elif mode == "fan_avg": denominator = (fan_in + fan_out) / 2 else: raise ValueError( "invalid mode for variance scaling initializer: {}".format(mode)) variance = scale / denominator if distribution == "normal": return torch.randn(*shape, dtype=dtype, device=device) * np.sqrt(variance) elif distribution == "uniform": return (torch.rand(*shape, dtype=dtype, device=device) * 2. - 1.) * np.sqrt(3 * variance) else: raise ValueError("invalid distribution for variance scaling initializer") return init def default_init(scale=1.): """The same initialization used in DDPM.""" scale = 1e-10 if scale == 0 else scale return variance_scaling(scale, 'fan_avg', 'uniform') class Dense(nn.Module): """Linear layer with `default_init`.""" def __init__(self): super().__init__() def ddpm_conv1x1(in_planes, out_planes, stride=1, bias=True, init_scale=1., padding=0): """1x1 convolution with DDPM initialization.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, padding=padding, bias=bias) conv.weight.data = default_init(init_scale)(conv.weight.data.shape) nn.init.zeros_(conv.bias) return conv def ncsn_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1): """3x3 convolution with PyTorch initialization. Same as NCSNv1/NCSNv2.""" init_scale = 1e-10 if init_scale == 0 else init_scale conv = nn.Conv2d(in_planes, out_planes, stride=stride, bias=bias, dilation=dilation, padding=padding, kernel_size=3) conv.weight.data *= init_scale conv.bias.data *= init_scale return conv def ddpm_conv3x3(in_planes, out_planes, stride=1, bias=True, dilation=1, init_scale=1., padding=1): """3x3 convolution with DDPM initialization.""" conv = nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=padding, dilation=dilation, bias=bias) conv.weight.data = default_init(init_scale)(conv.weight.data.shape) nn.init.zeros_(conv.bias) return conv ########################################################################### # Functions below are ported over from the NCSNv1/NCSNv2 codebase: # https://github.com/ermongroup/ncsn # https://github.com/ermongroup/ncsnv2 ########################################################################### class CRPBlock(nn.Module): def __init__(self, features, n_stages, act=nn.ReLU(), maxpool=True): super().__init__() self.convs = nn.ModuleList() for i in range(n_stages): self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False)) self.n_stages = n_stages if maxpool: self.pool = nn.MaxPool2d(kernel_size=5, stride=1, padding=2) else: self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2) self.act = act def forward(self, x): x = self.act(x) path = x for i in range(self.n_stages): path = self.pool(path) path = self.convs[i](path) x = path + x return x class CondCRPBlock(nn.Module): def __init__(self, features, n_stages, num_classes, normalizer, act=nn.ReLU()): super().__init__() self.convs = nn.ModuleList() self.norms = nn.ModuleList() self.normalizer = normalizer for i in range(n_stages): self.norms.append(normalizer(features, num_classes, bias=True)) self.convs.append(ncsn_conv3x3(features, features, stride=1, bias=False)) self.n_stages = n_stages self.pool = nn.AvgPool2d(kernel_size=5, stride=1, padding=2) self.act = act def forward(self, x, y): x = self.act(x) path = x for i in range(self.n_stages): path = self.norms[i](path, y) path = self.pool(path) path = self.convs[i](path) x = path + x return x class RCUBlock(nn.Module): def __init__(self, features, n_blocks, n_stages, act=nn.ReLU()): super().__init__() for i in range(n_blocks): for j in range(n_stages): setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False)) self.stride = 1 self.n_blocks = n_blocks self.n_stages = n_stages self.act = act def forward(self, x): for i in range(self.n_blocks): residual = x for j in range(self.n_stages): x = self.act(x) x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x) x += residual return x class CondRCUBlock(nn.Module): def __init__(self, features, n_blocks, n_stages, num_classes, normalizer, act=nn.ReLU()): super().__init__() for i in range(n_blocks): for j in range(n_stages): setattr(self, '{}_{}_norm'.format(i + 1, j + 1), normalizer(features, num_classes, bias=True)) setattr(self, '{}_{}_conv'.format(i + 1, j + 1), ncsn_conv3x3(features, features, stride=1, bias=False)) self.stride = 1 self.n_blocks = n_blocks self.n_stages = n_stages self.act = act self.normalizer = normalizer def forward(self, x, y): for i in range(self.n_blocks): residual = x for j in range(self.n_stages): x = getattr(self, '{}_{}_norm'.format(i + 1, j + 1))(x, y) x = self.act(x) x = getattr(self, '{}_{}_conv'.format(i + 1, j + 1))(x) x += residual return x class MSFBlock(nn.Module): def __init__(self, in_planes, features): super().__init__() assert isinstance(in_planes, list) or isinstance(in_planes, tuple) self.convs = nn.ModuleList() self.features = features for i in range(len(in_planes)): self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True)) def forward(self, xs, shape): sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device) for i in range(len(self.convs)): h = self.convs[i](xs[i]) h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True) sums += h return sums class CondMSFBlock(nn.Module): def __init__(self, in_planes, features, num_classes, normalizer): super().__init__() assert isinstance(in_planes, list) or isinstance(in_planes, tuple) self.convs = nn.ModuleList() self.norms = nn.ModuleList() self.features = features self.normalizer = normalizer for i in range(len(in_planes)): self.convs.append(ncsn_conv3x3(in_planes[i], features, stride=1, bias=True)) self.norms.append(normalizer(in_planes[i], num_classes, bias=True)) def forward(self, xs, y, shape): sums = torch.zeros(xs[0].shape[0], self.features, *shape, device=xs[0].device) for i in range(len(self.convs)): h = self.norms[i](xs[i], y) h = self.convs[i](h) h = F.interpolate(h, size=shape, mode='bilinear', align_corners=True) sums += h return sums class RefineBlock(nn.Module): def __init__(self, in_planes, features, act=nn.ReLU(), start=False, end=False, maxpool=True): super().__init__() assert isinstance(in_planes, tuple) or isinstance(in_planes, list) self.n_blocks = n_blocks = len(in_planes) self.adapt_convs = nn.ModuleList() for i in range(n_blocks): self.adapt_convs.append(RCUBlock(in_planes[i], 2, 2, act)) self.output_convs = RCUBlock(features, 3 if end else 1, 2, act) if not start: self.msf = MSFBlock(in_planes, features) self.crp = CRPBlock(features, 2, act, maxpool=maxpool) def forward(self, xs, output_shape): assert isinstance(xs, tuple) or isinstance(xs, list) hs = [] for i in range(len(xs)): h = self.adapt_convs[i](xs[i]) hs.append(h) if self.n_blocks > 1: h = self.msf(hs, output_shape) else: h = hs[0] h = self.crp(h) h = self.output_convs(h) return h class CondRefineBlock(nn.Module): def __init__(self, in_planes, features, num_classes, normalizer, act=nn.ReLU(), start=False, end=False): super().__init__() assert isinstance(in_planes, tuple) or isinstance(in_planes, list) self.n_blocks = n_blocks = len(in_planes) self.adapt_convs = nn.ModuleList() for i in range(n_blocks): self.adapt_convs.append( CondRCUBlock(in_planes[i], 2, 2, num_classes, normalizer, act) ) self.output_convs = CondRCUBlock(features, 3 if end else 1, 2, num_classes, normalizer, act) if not start: self.msf = CondMSFBlock(in_planes, features, num_classes, normalizer) self.crp = CondCRPBlock(features, 2, num_classes, normalizer, act) def forward(self, xs, y, output_shape): assert isinstance(xs, tuple) or isinstance(xs, list) hs = [] for i in range(len(xs)): h = self.adapt_convs[i](xs[i], y) hs.append(h) if self.n_blocks > 1: h = self.msf(hs, y, output_shape) else: h = hs[0] h = self.crp(h, y) h = self.output_convs(h, y) return h class ConvMeanPool(nn.Module): def __init__(self, input_dim, output_dim, kernel_size=3, biases=True, adjust_padding=False): super().__init__() if not adjust_padding: conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.conv = conv else: conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.conv = nn.Sequential( nn.ZeroPad2d((1, 0, 1, 0)), conv ) def forward(self, inputs): output = self.conv(inputs) output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2], output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4. return output class MeanPoolConv(nn.Module): def __init__(self, input_dim, output_dim, kernel_size=3, biases=True): super().__init__() self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) def forward(self, inputs): output = inputs output = sum([output[:, :, ::2, ::2], output[:, :, 1::2, ::2], output[:, :, ::2, 1::2], output[:, :, 1::2, 1::2]]) / 4. return self.conv(output) class UpsampleConv(nn.Module): def __init__(self, input_dim, output_dim, kernel_size=3, biases=True): super().__init__() self.conv = nn.Conv2d(input_dim, output_dim, kernel_size, stride=1, padding=kernel_size // 2, bias=biases) self.pixelshuffle = nn.PixelShuffle(upscale_factor=2) def forward(self, inputs): output = inputs output = torch.cat([output, output, output, output], dim=1) output = self.pixelshuffle(output) return self.conv(output) class ConditionalResidualBlock(nn.Module): def __init__(self, input_dim, output_dim, num_classes, resample=1, act=nn.ELU(), normalization=ConditionalInstanceNorm2dPlus, adjust_padding=False, dilation=None): super().__init__() self.non_linearity = act self.input_dim = input_dim self.output_dim = output_dim self.resample = resample self.normalization = normalization if resample == 'down': if dilation > 1: self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation) self.normalize2 = normalization(input_dim, num_classes) self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) else: self.conv1 = ncsn_conv3x3(input_dim, input_dim) self.normalize2 = normalization(input_dim, num_classes) self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding) conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding) elif resample is None: if dilation > 1: conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) self.normalize2 = normalization(output_dim, num_classes) self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation) else: conv_shortcut = nn.Conv2d self.conv1 = ncsn_conv3x3(input_dim, output_dim) self.normalize2 = normalization(output_dim, num_classes) self.conv2 = ncsn_conv3x3(output_dim, output_dim) else: raise Exception('invalid resample value') if output_dim != input_dim or resample is not None: self.shortcut = conv_shortcut(input_dim, output_dim) self.normalize1 = normalization(input_dim, num_classes) def forward(self, x, y): output = self.normalize1(x, y) output = self.non_linearity(output) output = self.conv1(output) output = self.normalize2(output, y) output = self.non_linearity(output) output = self.conv2(output) if self.output_dim == self.input_dim and self.resample is None: shortcut = x else: shortcut = self.shortcut(x) return shortcut + output class ResidualBlock(nn.Module): def __init__(self, input_dim, output_dim, resample=None, act=nn.ELU(), normalization=nn.InstanceNorm2d, adjust_padding=False, dilation=1): super().__init__() self.non_linearity = act self.input_dim = input_dim self.output_dim = output_dim self.resample = resample self.normalization = normalization if resample == 'down': if dilation > 1: self.conv1 = ncsn_conv3x3(input_dim, input_dim, dilation=dilation) self.normalize2 = normalization(input_dim) self.conv2 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) else: self.conv1 = ncsn_conv3x3(input_dim, input_dim) self.normalize2 = normalization(input_dim) self.conv2 = ConvMeanPool(input_dim, output_dim, 3, adjust_padding=adjust_padding) conv_shortcut = partial(ConvMeanPool, kernel_size=1, adjust_padding=adjust_padding) elif resample is None: if dilation > 1: conv_shortcut = partial(ncsn_conv3x3, dilation=dilation) self.conv1 = ncsn_conv3x3(input_dim, output_dim, dilation=dilation) self.normalize2 = normalization(output_dim) self.conv2 = ncsn_conv3x3(output_dim, output_dim, dilation=dilation) else: # conv_shortcut = nn.Conv2d ### Something wierd here. conv_shortcut = partial(ncsn_conv1x1) self.conv1 = ncsn_conv3x3(input_dim, output_dim) self.normalize2 = normalization(output_dim) self.conv2 = ncsn_conv3x3(output_dim, output_dim) else: raise Exception('invalid resample value') if output_dim != input_dim or resample is not None: self.shortcut = conv_shortcut(input_dim, output_dim) self.normalize1 = normalization(input_dim) def forward(self, x): output = self.normalize1(x) output = self.non_linearity(output) output = self.conv1(output) output = self.normalize2(output) output = self.non_linearity(output) output = self.conv2(output) if self.output_dim == self.input_dim and self.resample is None: shortcut = x else: shortcut = self.shortcut(x) return shortcut + output ########################################################################### # Functions below are ported over from the DDPM codebase: # https://github.com/hojonathanho/diffusion/blob/master/diffusion_tf/nn.py ########################################################################### def get_timestep_embedding(timesteps, embedding_dim, max_positions=10000): assert len(timesteps.shape) == 1 # and timesteps.dtype == tf.int32 half_dim = embedding_dim // 2 # magic number 10000 is from transformers emb = math.log(max_positions) / (half_dim - 1) # emb = math.log(2.) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, dtype=torch.float32, device=timesteps.device) * -emb) # emb = tf.range(num_embeddings, dtype=jnp.float32)[:, None] * emb[None, :] # emb = tf.cast(timesteps, dtype=jnp.float32)[:, None] * emb[None, :] emb = timesteps.float()[:, None] * emb[None, :] emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1) if embedding_dim % 2 == 1: # zero pad emb = F.pad(emb, (0, 1), mode='constant') assert emb.shape == (timesteps.shape[0], embedding_dim) return emb def _einsum(a, b, c, x, y): einsum_str = '{},{}->{}'.format(''.join(a), ''.join(b), ''.join(c)) return torch.einsum(einsum_str, x, y) def contract_inner(x, y): """tensordot(x, y, 1).""" x_chars = list(string.ascii_lowercase[:len(x.shape)]) y_chars = list(string.ascii_lowercase[len(x.shape):len(y.shape) + len(x.shape)]) y_chars[0] = x_chars[-1] # first axis of y and last of x get summed out_chars = x_chars[:-1] + y_chars[1:] return _einsum(x_chars, y_chars, out_chars, x, y) class NIN(nn.Module): def __init__(self, in_dim, num_units, init_scale=0.1): super().__init__() self.W = nn.Parameter(default_init(scale=init_scale)((in_dim, num_units)), requires_grad=True) self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) def forward(self, x): x = x.permute(0, 2, 3, 1) y = contract_inner(x, self.W) + self.b return y.permute(0, 3, 1, 2) class AttnBlock(nn.Module): """Channel-wise self-attention block.""" def __init__(self, channels): super().__init__() self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=channels, eps=1e-6) self.NIN_0 = NIN(channels, channels) self.NIN_1 = NIN(channels, channels) self.NIN_2 = NIN(channels, channels) self.NIN_3 = NIN(channels, channels, init_scale=0.) def forward(self, x): B, C, H, W = x.shape h = self.GroupNorm_0(x) q = self.NIN_0(h) k = self.NIN_1(h) v = self.NIN_2(h) w = torch.einsum('bchw,bcij->bhwij', q, k) * (int(C) ** (-0.5)) w = torch.reshape(w, (B, H, W, H * W)) w = F.softmax(w, dim=-1) w = torch.reshape(w, (B, H, W, H, W)) h = torch.einsum('bhwij,bcij->bchw', w, v) h = self.NIN_3(h) return x + h class Upsample(nn.Module): def __init__(self, channels, with_conv=False): super().__init__() if with_conv: self.Conv_0 = ddpm_conv3x3(channels, channels) self.with_conv = with_conv def forward(self, x): B, C, H, W = x.shape h = F.interpolate(x, (H * 2, W * 2), mode='nearest') if self.with_conv: h = self.Conv_0(h) return h class Downsample(nn.Module): def __init__(self, channels, with_conv=False): super().__init__() if with_conv: self.Conv_0 = ddpm_conv3x3(channels, channels, stride=2, padding=0) self.with_conv = with_conv def forward(self, x): B, C, H, W = x.shape # Emulate 'SAME' padding if self.with_conv: x = F.pad(x, (0, 1, 0, 1)) x = self.Conv_0(x) else: x = F.avg_pool2d(x, kernel_size=2, stride=2, padding=0) assert x.shape == (B, C, H // 2, W // 2) return x class ResnetBlockDDPM(nn.Module): """The ResNet Blocks used in DDPM.""" def __init__(self, act, in_ch, out_ch=None, temb_dim=None, conv_shortcut=False, dropout=0.1): super().__init__() if out_ch is None: out_ch = in_ch self.GroupNorm_0 = nn.GroupNorm(num_groups=32, num_channels=in_ch, eps=1e-6) self.act = act self.Conv_0 = ddpm_conv3x3(in_ch, out_ch) if temb_dim is not None: self.Dense_0 = nn.Linear(temb_dim, out_ch) self.Dense_0.weight.data = default_init()(self.Dense_0.weight.data.shape) nn.init.zeros_(self.Dense_0.bias) self.GroupNorm_1 = nn.GroupNorm(num_groups=32, num_channels=out_ch, eps=1e-6) self.Dropout_0 = nn.Dropout(dropout) self.Conv_1 = ddpm_conv3x3(out_ch, out_ch, init_scale=0.) if in_ch != out_ch: if conv_shortcut: self.Conv_2 = ddpm_conv3x3(in_ch, out_ch) else: self.NIN_0 = NIN(in_ch, out_ch) self.out_ch = out_ch self.in_ch = in_ch self.conv_shortcut = conv_shortcut def forward(self, x, temb=None): B, C, H, W = x.shape assert C == self.in_ch out_ch = self.out_ch if self.out_ch else self.in_ch h = self.act(self.GroupNorm_0(x)) h = self.Conv_0(h) # Add bias to each feature map conditioned on the time embedding if temb is not None: h += self.Dense_0(self.act(temb))[:, :, None, None] h = self.act(self.GroupNorm_1(h)) h = self.Dropout_0(h) h = self.Conv_1(h) if C != out_ch: if self.conv_shortcut: x = self.Conv_2(x) else: x = self.NIN_0(x) return x + h