from pathlib import Path from typing import Callable from typing import Dict from typing import List from typing import Union import numpy as np from torch.utils.data import SequentialSampler from torch.utils.data.distributed import DistributedSampler from ..core import AudioSignal from ..core import util class AudioLoader: """Loads audio endlessly from a list of audio sources containing paths to audio files. Audio sources can be folders full of audio files (which are found via file extension) or by providing a CSV file which contains paths to audio files. Parameters ---------- sources : List[str], optional Sources containing folders, or CSVs with paths to audio files, by default None weights : List[float], optional Weights to sample audio files from each source, by default None relative_path : str, optional Path audio should be loaded relative to, by default "" transform : Callable, optional Transform to instantiate alongside audio sample, by default None ext : List[str] List of extensions to find audio within each source by. Can also be a file name (e.g. "vocals.wav"). by default ``['.wav', '.flac', '.mp3', '.mp4']``. shuffle: bool Whether to shuffle the files within the dataloader. Defaults to True. shuffle_state: int State to use to seed the shuffle of the files. """ def __init__( self, sources: List[str] = None, weights: List[float] = None, transform: Callable = None, relative_path: str = "", ext: List[str] = util.AUDIO_EXTENSIONS, shuffle: bool = True, shuffle_state: int = 0, ): self.audio_lists = util.read_sources( sources, relative_path=relative_path, ext=ext ) self.audio_indices = [ (src_idx, item_idx) for src_idx, src in enumerate(self.audio_lists) for item_idx in range(len(src)) ] if shuffle: state = util.random_state(shuffle_state) state.shuffle(self.audio_indices) self.sources = sources self.weights = weights self.transform = transform def __call__( self, state, sample_rate: int, duration: float, loudness_cutoff: float = -40, num_channels: int = 1, offset: float = None, source_idx: int = None, item_idx: int = None, global_idx: int = None, ): if source_idx is not None and item_idx is not None: try: audio_info = self.audio_lists[source_idx][item_idx] except: audio_info = {"path": "none"} elif global_idx is not None: source_idx, item_idx = self.audio_indices[ global_idx % len(self.audio_indices) ] audio_info = self.audio_lists[source_idx][item_idx] else: audio_info, source_idx, item_idx = util.choose_from_list_of_lists( state, self.audio_lists, p=self.weights ) path = audio_info["path"] signal = AudioSignal.zeros(duration, sample_rate, num_channels) if path != "none": if offset is None: signal = AudioSignal.salient_excerpt( path, duration=duration, state=state, loudness_cutoff=loudness_cutoff, ) else: signal = AudioSignal( path, offset=offset, duration=duration, ) if num_channels == 1: signal = signal.to_mono() signal = signal.resample(sample_rate) if signal.duration < duration: signal = signal.zero_pad_to(int(duration * sample_rate)) for k, v in audio_info.items(): signal.metadata[k] = v item = { "signal": signal, "source_idx": source_idx, "item_idx": item_idx, "source": str(self.sources[source_idx]), "path": str(path), } if self.transform is not None: item["transform_args"] = self.transform.instantiate(state, signal=signal) return item def default_matcher(x, y): return Path(x).parent == Path(y).parent def align_lists(lists, matcher: Callable = default_matcher): longest_list = lists[np.argmax([len(l) for l in lists])] for i, x in enumerate(longest_list): for l in lists: if i >= len(l): l.append({"path": "none"}) elif not matcher(l[i]["path"], x["path"]): l.insert(i, {"path": "none"}) return lists class AudioDataset: """Loads audio from multiple loaders (with associated transforms) for a specified number of samples. Excerpts are drawn randomly of the specified duration, above a specified loudness threshold and are resampled on the fly to the desired sample rate (if it is different from the audio source sample rate). This takes either a single AudioLoader object, a dictionary of AudioLoader objects, or a dictionary of AudioLoader objects. Each AudioLoader is called by the dataset, and the result is placed in the output dictionary. A transform can also be specified for the entire dataset, rather than for each specific loader. This transform can be applied to the output of all the loaders if desired. AudioLoader objects can be specified as aligned, which means the loaders correspond to multitrack audio (e.g. a vocals, bass, drums, and other loader for multitrack music mixtures). Parameters ---------- loaders : Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]] AudioLoaders to sample audio from. sample_rate : int Desired sample rate. n_examples : int, optional Number of examples (length of dataset), by default 1000 duration : float, optional Duration of audio samples, by default 0.5 loudness_cutoff : float, optional Loudness cutoff threshold for audio samples, by default -40 num_channels : int, optional Number of channels in output audio, by default 1 transform : Callable, optional Transform to instantiate alongside each dataset item, by default None aligned : bool, optional Whether the loaders should be sampled in an aligned manner (e.g. same offset, duration, and matched file name), by default False shuffle_loaders : bool, optional Whether to shuffle the loaders before sampling from them, by default False matcher : Callable How to match files from adjacent audio lists (e.g. for a multitrack audio loader), by default uses the parent directory of each file. without_replacement : bool Whether to choose files with or without replacement, by default True. Examples -------- >>> from audiotools.data.datasets import AudioLoader >>> from audiotools.data.datasets import AudioDataset >>> from audiotools import transforms as tfm >>> import numpy as np >>> >>> loaders = [ >>> AudioLoader( >>> sources=[f"tests/audio/spk"], >>> transform=tfm.Equalizer(), >>> ext=["wav"], >>> ) >>> for i in range(5) >>> ] >>> >>> dataset = AudioDataset( >>> loaders = loaders, >>> sample_rate = 44100, >>> duration = 1.0, >>> transform = tfm.RescaleAudio(), >>> ) >>> >>> item = dataset[np.random.randint(len(dataset))] >>> >>> for i in range(len(loaders)): >>> item[i]["signal"] = loaders[i].transform( >>> item[i]["signal"], **item[i]["transform_args"] >>> ) >>> item[i]["signal"].widget(i) >>> >>> mix = sum([item[i]["signal"] for i in range(len(loaders))]) >>> mix = dataset.transform(mix, **item["transform_args"]) >>> mix.widget("mix") Below is an example of how one could load MUSDB multitrack data: >>> import audiotools as at >>> from pathlib import Path >>> from audiotools import transforms as tfm >>> import numpy as np >>> import torch >>> >>> def build_dataset( >>> sample_rate: int = 44100, >>> duration: float = 5.0, >>> musdb_path: str = "~/.data/musdb/", >>> ): >>> musdb_path = Path(musdb_path).expanduser() >>> loaders = { >>> src: at.datasets.AudioLoader( >>> sources=[musdb_path], >>> transform=tfm.Compose( >>> tfm.VolumeNorm(("uniform", -20, -10)), >>> tfm.Silence(prob=0.1), >>> ), >>> ext=[f"{src}.wav"], >>> ) >>> for src in ["vocals", "bass", "drums", "other"] >>> } >>> >>> dataset = at.datasets.AudioDataset( >>> loaders=loaders, >>> sample_rate=sample_rate, >>> duration=duration, >>> num_channels=1, >>> aligned=True, >>> transform=tfm.RescaleAudio(), >>> shuffle_loaders=True, >>> ) >>> return dataset, list(loaders.keys()) >>> >>> train_data, sources = build_dataset() >>> dataloader = torch.utils.data.DataLoader( >>> train_data, >>> batch_size=16, >>> num_workers=0, >>> collate_fn=train_data.collate, >>> ) >>> batch = next(iter(dataloader)) >>> >>> for k in sources: >>> src = batch[k] >>> src["transformed"] = train_data.loaders[k].transform( >>> src["signal"].clone(), **src["transform_args"] >>> ) >>> >>> mixture = sum(batch[k]["transformed"] for k in sources) >>> mixture = train_data.transform(mixture, **batch["transform_args"]) >>> >>> # Say a model takes the mix and gives back (n_batch, n_src, n_time). >>> # Construct the targets: >>> targets = at.AudioSignal.batch([batch[k]["transformed"] for k in sources], dim=1) Similarly, here's example code for loading Slakh data: >>> import audiotools as at >>> from pathlib import Path >>> from audiotools import transforms as tfm >>> import numpy as np >>> import torch >>> import glob >>> >>> def build_dataset( >>> sample_rate: int = 16000, >>> duration: float = 10.0, >>> slakh_path: str = "~/.data/slakh/", >>> ): >>> slakh_path = Path(slakh_path).expanduser() >>> >>> # Find the max number of sources in Slakh >>> src_names = [x.name for x in list(slakh_path.glob("**/*.wav")) if "S" in str(x.name)] >>> n_sources = len(list(set(src_names))) >>> >>> loaders = { >>> f"S{i:02d}": at.datasets.AudioLoader( >>> sources=[slakh_path], >>> transform=tfm.Compose( >>> tfm.VolumeNorm(("uniform", -20, -10)), >>> tfm.Silence(prob=0.1), >>> ), >>> ext=[f"S{i:02d}.wav"], >>> ) >>> for i in range(n_sources) >>> } >>> dataset = at.datasets.AudioDataset( >>> loaders=loaders, >>> sample_rate=sample_rate, >>> duration=duration, >>> num_channels=1, >>> aligned=True, >>> transform=tfm.RescaleAudio(), >>> shuffle_loaders=False, >>> ) >>> >>> return dataset, list(loaders.keys()) >>> >>> train_data, sources = build_dataset() >>> dataloader = torch.utils.data.DataLoader( >>> train_data, >>> batch_size=16, >>> num_workers=0, >>> collate_fn=train_data.collate, >>> ) >>> batch = next(iter(dataloader)) >>> >>> for k in sources: >>> src = batch[k] >>> src["transformed"] = train_data.loaders[k].transform( >>> src["signal"].clone(), **src["transform_args"] >>> ) >>> >>> mixture = sum(batch[k]["transformed"] for k in sources) >>> mixture = train_data.transform(mixture, **batch["transform_args"]) """ def __init__( self, loaders: Union[AudioLoader, List[AudioLoader], Dict[str, AudioLoader]], sample_rate: int, n_examples: int = 1000, duration: float = 0.5, offset: float = None, loudness_cutoff: float = -40, num_channels: int = 1, transform: Callable = None, aligned: bool = False, shuffle_loaders: bool = False, matcher: Callable = default_matcher, without_replacement: bool = True, ): # Internally we convert loaders to a dictionary if isinstance(loaders, list): loaders = {i: l for i, l in enumerate(loaders)} elif isinstance(loaders, AudioLoader): loaders = {0: loaders} self.loaders = loaders self.loudness_cutoff = loudness_cutoff self.num_channels = num_channels self.length = n_examples self.transform = transform self.sample_rate = sample_rate self.duration = duration self.offset = offset self.aligned = aligned self.shuffle_loaders = shuffle_loaders self.without_replacement = without_replacement if aligned: loaders_list = list(loaders.values()) for i in range(len(loaders_list[0].audio_lists)): input_lists = [l.audio_lists[i] for l in loaders_list] # Alignment happens in-place align_lists(input_lists, matcher) def __getitem__(self, idx): state = util.random_state(idx) offset = None if self.offset is None else self.offset item = {} keys = list(self.loaders.keys()) if self.shuffle_loaders: state.shuffle(keys) loader_kwargs = { "state": state, "sample_rate": self.sample_rate, "duration": self.duration, "loudness_cutoff": self.loudness_cutoff, "num_channels": self.num_channels, "global_idx": idx if self.without_replacement else None, } # Draw item from first loader loader = self.loaders[keys[0]] item[keys[0]] = loader(**loader_kwargs) for key in keys[1:]: loader = self.loaders[key] if self.aligned: # Path mapper takes the current loader + everything # returned by the first loader. offset = item[keys[0]]["signal"].metadata["offset"] loader_kwargs.update( { "offset": offset, "source_idx": item[keys[0]]["source_idx"], "item_idx": item[keys[0]]["item_idx"], } ) item[key] = loader(**loader_kwargs) # Sort dictionary back into original order keys = list(self.loaders.keys()) item = {k: item[k] for k in keys} item["idx"] = idx if self.transform is not None: item["transform_args"] = self.transform.instantiate( state=state, signal=item[keys[0]]["signal"] ) # If there's only one loader, pop it up # to the main dictionary, instead of keeping it # nested. if len(keys) == 1: item.update(item.pop(keys[0])) return item def __len__(self): return self.length @staticmethod def collate(list_of_dicts: Union[list, dict], n_splits: int = None): """Collates items drawn from this dataset. Uses :py:func:`audiotools.core.util.collate`. Parameters ---------- list_of_dicts : typing.Union[list, dict] Data drawn from each item. n_splits : int Number of splits to make when creating the batches (split into sub-batches). Useful for things like gradient accumulation. Returns ------- dict Dictionary of batched data. """ return util.collate(list_of_dicts, n_splits=n_splits) class ConcatDataset(AudioDataset): def __init__(self, datasets: list): self.datasets = datasets def __len__(self): return sum([len(d) for d in self.datasets]) def __getitem__(self, idx): dataset = self.datasets[idx % len(self.datasets)] return dataset[idx // len(self.datasets)] class ResumableDistributedSampler(DistributedSampler): # pragma: no cover """Distributed sampler that can be resumed from a given start index.""" def __init__(self, dataset, start_idx: int = None, **kwargs): super().__init__(dataset, **kwargs) # Start index, allows to resume an experiment at the index it was self.start_idx = start_idx // self.num_replicas if start_idx is not None else 0 def __iter__(self): for i, idx in enumerate(super().__iter__()): if i >= self.start_idx: yield idx self.start_idx = 0 # set the index back to 0 so for the next epoch class ResumableSequentialSampler(SequentialSampler): # pragma: no cover """Sequential sampler that can be resumed from a given start index.""" def __init__(self, dataset, start_idx: int = None, **kwargs): super().__init__(dataset, **kwargs) # Start index, allows to resume an experiment at the index it was self.start_idx = start_idx if start_idx is not None else 0 def __iter__(self): for i, idx in enumerate(super().__iter__()): if i >= self.start_idx: yield idx self.start_idx = 0 # set the index back to 0 so for the next epoch