import csv import glob import math import numbers import os import random import typing from contextlib import contextmanager from dataclasses import dataclass from pathlib import Path from typing import Dict from typing import List import numpy as np import torch import torchaudio from flatten_dict import flatten from flatten_dict import unflatten @dataclass class Info: """Shim for torchaudio.info API changes.""" sample_rate: float num_frames: int @property def duration(self) -> float: return self.num_frames / self.sample_rate def info(audio_path: str): """Shim for torchaudio.info to make 0.7.2 API match 0.8.0. Parameters ---------- audio_path : str Path to audio file. """ # try default backend first, then fallback to soundfile try: info = torchaudio.info(str(audio_path)) except: # pragma: no cover info = torchaudio.backend.soundfile_backend.info(str(audio_path)) if isinstance(info, tuple): # pragma: no cover signal_info = info[0] info = Info(sample_rate=signal_info.rate, num_frames=signal_info.length) else: info = Info(sample_rate=info.sample_rate, num_frames=info.num_frames) return info def ensure_tensor( x: typing.Union[np.ndarray, torch.Tensor, float, int], ndim: int = None, batch_size: int = None, ): """Ensures that the input ``x`` is a tensor of specified dimensions and batch size. Parameters ---------- x : typing.Union[np.ndarray, torch.Tensor, float, int] Data that will become a tensor on its way out. ndim : int, optional How many dimensions should be in the output, by default None batch_size : int, optional The batch size of the output, by default None Returns ------- torch.Tensor Modified version of ``x`` as a tensor. """ if not torch.is_tensor(x): x = torch.as_tensor(x) if ndim is not None: assert x.ndim <= ndim while x.ndim < ndim: x = x.unsqueeze(-1) if batch_size is not None: if x.shape[0] != batch_size: shape = list(x.shape) shape[0] = batch_size x = x.expand(*shape) return x def _get_value(other): from . import AudioSignal if isinstance(other, AudioSignal): return other.audio_data return other def hz_to_bin(hz: torch.Tensor, n_fft: int, sample_rate: int): """Closest frequency bin given a frequency, number of bins, and a sampling rate. Parameters ---------- hz : torch.Tensor Tensor of frequencies in Hz. n_fft : int Number of FFT bins. sample_rate : int Sample rate of audio. Returns ------- torch.Tensor Closest bins to the data. """ shape = hz.shape hz = hz.flatten() freqs = torch.linspace(0, sample_rate / 2, 2 + n_fft // 2) hz[hz > sample_rate / 2] = sample_rate / 2 closest = (hz[None, :] - freqs[:, None]).abs() closest_bins = closest.min(dim=0).indices return closest_bins.reshape(*shape) def random_state(seed: typing.Union[int, np.random.RandomState]): """ Turn seed into a np.random.RandomState instance. Parameters ---------- seed : typing.Union[int, np.random.RandomState] or None If seed is None, return the RandomState singleton used by np.random. If seed is an int, return a new RandomState instance seeded with seed. If seed is already a RandomState instance, return it. Otherwise raise ValueError. Returns ------- np.random.RandomState Random state object. Raises ------ ValueError If seed is not valid, an error is thrown. """ if seed is None or seed is np.random: return np.random.mtrand._rand elif isinstance(seed, (numbers.Integral, np.integer, int)): return np.random.RandomState(seed) elif isinstance(seed, np.random.RandomState): return seed else: raise ValueError( "%r cannot be used to seed a numpy.random.RandomState" " instance" % seed ) def seed(random_seed, set_cudnn=False): """ Seeds all random states with the same random seed for reproducibility. Seeds ``numpy``, ``random`` and ``torch`` random generators. For full reproducibility, two further options must be set according to the torch documentation: https://pytorch.org/docs/stable/notes/randomness.html To do this, ``set_cudnn`` must be True. It defaults to False, since setting it to True results in a performance hit. Args: random_seed (int): integer corresponding to random seed to use. set_cudnn (bool): Whether or not to set cudnn into determinstic mode and off of benchmark mode. Defaults to False. """ torch.manual_seed(random_seed) np.random.seed(random_seed) random.seed(random_seed) if set_cudnn: torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False @contextmanager def _close_temp_files(tmpfiles: list): """Utility function for creating a context and closing all temporary files once the context is exited. For correct functionality, all temporary file handles created inside the context must be appended to the ```tmpfiles``` list. This function is taken wholesale from Scaper. Parameters ---------- tmpfiles : list List of temporary file handles """ def _close(): for t in tmpfiles: try: t.close() os.unlink(t.name) except: pass try: yield except: # pragma: no cover _close() raise _close() AUDIO_EXTENSIONS = [".wav", ".flac", ".mp3", ".mp4"] def find_audio(folder: str, ext: List[str] = AUDIO_EXTENSIONS): """Finds all audio files in a directory recursively. Returns a list. Parameters ---------- folder : str Folder to look for audio files in, recursively. ext : List[str], optional Extensions to look for without the ., by default ``['.wav', '.flac', '.mp3', '.mp4']``. """ folder = Path(folder) # Take care of case where user has passed in an audio file directly # into one of the calling functions. if str(folder).endswith(tuple(ext)): # if, however, there's a glob in the path, we need to # return the glob, not the file. if "*" in str(folder): return glob.glob(str(folder), recursive=("**" in str(folder))) else: return [folder] files = [] for x in ext: files += folder.glob(f"**/*{x}") return files def read_sources( sources: List[str], remove_empty: bool = True, relative_path: str = "", ext: List[str] = AUDIO_EXTENSIONS, ): """Reads audio sources that can either be folders full of audio files, or CSV files that contain paths to audio files. CSV files that adhere to the expected format can be generated by :py:func:`audiotools.data.preprocess.create_csv`. Parameters ---------- sources : List[str] List of audio sources to be converted into a list of lists of audio files. remove_empty : bool, optional Whether or not to remove rows with an empty "path" from each CSV file, by default True. Returns ------- list List of lists of rows of CSV files. """ files = [] relative_path = Path(relative_path) for source in sources: source = str(source) _files = [] if source.endswith(".csv"): with open(source, "r") as f: reader = csv.DictReader(f) for x in reader: if remove_empty and x["path"] == "": continue if x["path"] != "": x["path"] = str(relative_path / x["path"]) _files.append(x) else: for x in find_audio(source, ext=ext): x = str(relative_path / x) _files.append({"path": x}) files.append(sorted(_files, key=lambda x: x["path"])) return files def choose_from_list_of_lists( state: np.random.RandomState, list_of_lists: list, p: float = None ): """Choose a single item from a list of lists. Parameters ---------- state : np.random.RandomState Random state to use when choosing an item. list_of_lists : list A list of lists from which items will be drawn. p : float, optional Probabilities of each list, by default None Returns ------- typing.Any An item from the list of lists. """ source_idx = state.choice(list(range(len(list_of_lists))), p=p) item_idx = state.randint(len(list_of_lists[source_idx])) return list_of_lists[source_idx][item_idx], source_idx, item_idx @contextmanager def chdir(newdir: typing.Union[Path, str]): """ Context manager for switching directories to run a function. Useful for when you want to use relative paths to different runs. Parameters ---------- newdir : typing.Union[Path, str] Directory to switch to. """ curdir = os.getcwd() try: os.chdir(newdir) yield finally: os.chdir(curdir) def prepare_batch(batch: typing.Union[dict, list, torch.Tensor], device: str = "cpu"): """Moves items in a batch (typically generated by a DataLoader as a list or a dict) to the specified device. This works even if dictionaries are nested. Parameters ---------- batch : typing.Union[dict, list, torch.Tensor] Batch, typically generated by a dataloader, that will be moved to the device. device : str, optional Device to move batch to, by default "cpu" Returns ------- typing.Union[dict, list, torch.Tensor] Batch with all values moved to the specified device. """ if isinstance(batch, dict): batch = flatten(batch) for key, val in batch.items(): try: batch[key] = val.to(device) except: pass batch = unflatten(batch) elif torch.is_tensor(batch): batch = batch.to(device) elif isinstance(batch, list): for i in range(len(batch)): try: batch[i] = batch[i].to(device) except: pass return batch def sample_from_dist(dist_tuple: tuple, state: np.random.RandomState = None): """Samples from a distribution defined by a tuple. The first item in the tuple is the distribution type, and the rest of the items are arguments to that distribution. The distribution function is gotten from the ``np.random.RandomState`` object. Parameters ---------- dist_tuple : tuple Distribution tuple state : np.random.RandomState, optional Random state, or seed to use, by default None Returns ------- typing.Union[float, int, str] Draw from the distribution. Examples -------- Sample from a uniform distribution: >>> dist_tuple = ("uniform", 0, 1) >>> sample_from_dist(dist_tuple) Sample from a constant distribution: >>> dist_tuple = ("const", 0) >>> sample_from_dist(dist_tuple) Sample from a normal distribution: >>> dist_tuple = ("normal", 0, 0.5) >>> sample_from_dist(dist_tuple) """ if dist_tuple[0] == "const": return dist_tuple[1] state = random_state(state) dist_fn = getattr(state, dist_tuple[0]) return dist_fn(*dist_tuple[1:]) def collate(list_of_dicts: list, n_splits: int = None): """Collates a list of dictionaries (e.g. as returned by a dataloader) into a dictionary with batched values. This routine uses the default torch collate function for everything except AudioSignal objects, which are handled by the :py:func:`audiotools.core.audio_signal.AudioSignal.batch` function. This function takes n_splits to enable splitting a batch into multiple sub-batches for the purposes of gradient accumulation, etc. Parameters ---------- list_of_dicts : list List of dictionaries to be collated. n_splits : int Number of splits to make when creating the batches (split into sub-batches). Useful for things like gradient accumulation. Returns ------- dict Dictionary containing batched data. """ from . import AudioSignal batches = [] list_len = len(list_of_dicts) return_list = False if n_splits is None else True n_splits = 1 if n_splits is None else n_splits n_items = int(math.ceil(list_len / n_splits)) for i in range(0, list_len, n_items): # Flatten the dictionaries to avoid recursion. list_of_dicts_ = [flatten(d) for d in list_of_dicts[i : i + n_items]] dict_of_lists = { k: [dic[k] for dic in list_of_dicts_] for k in list_of_dicts_[0] } batch = {} for k, v in dict_of_lists.items(): if isinstance(v, list): if all(isinstance(s, AudioSignal) for s in v): batch[k] = AudioSignal.batch(v, pad_signals=True) else: # Borrow the default collate fn from torch. batch[k] = torch.utils.data._utils.collate.default_collate(v) batches.append(unflatten(batch)) batches = batches[0] if not return_list else batches return batches BASE_SIZE = 864 DEFAULT_FIG_SIZE = (9, 3) def format_figure( fig_size: tuple = None, title: str = None, fig=None, format_axes: bool = True, format: bool = True, font_color: str = "white", ): """Prettifies the spectrogram and waveform plots. A title can be inset into the top right corner, and the axes can be inset into the figure, allowing the data to take up the entire image. Used in - :py:func:`audiotools.core.display.DisplayMixin.specshow` - :py:func:`audiotools.core.display.DisplayMixin.waveplot` - :py:func:`audiotools.core.display.DisplayMixin.wavespec` Parameters ---------- fig_size : tuple, optional Size of figure, by default (9, 3) title : str, optional Title to inset in top right, by default None fig : matplotlib.figure.Figure, optional Figure object, if None ``plt.gcf()`` will be used, by default None format_axes : bool, optional Format the axes to be inside the figure, by default True format : bool, optional This formatting can be skipped entirely by passing ``format=False`` to any of the plotting functions that use this formater, by default True font_color : str, optional Color of font of axes, by default "white" """ import matplotlib import matplotlib.pyplot as plt if fig_size is None: fig_size = DEFAULT_FIG_SIZE if not format: return if fig is None: fig = plt.gcf() fig.set_size_inches(*fig_size) axs = fig.axes pixels = (fig.get_size_inches() * fig.dpi)[0] font_scale = pixels / BASE_SIZE if format_axes: axs = fig.axes for ax in axs: ymin, _ = ax.get_ylim() xmin, _ = ax.get_xlim() ticks = ax.get_yticks() for t in ticks[2:-1]: t = axs[0].annotate( f"{(t / 1000):2.1f}k", xy=(xmin, t), xycoords="data", xytext=(5, -5), textcoords="offset points", ha="left", va="top", color=font_color, fontsize=12 * font_scale, alpha=0.75, ) ticks = ax.get_xticks()[2:] for t in ticks[:-1]: t = axs[0].annotate( f"{t:2.1f}s", xy=(t, ymin), xycoords="data", xytext=(5, 5), textcoords="offset points", ha="center", va="bottom", color=font_color, fontsize=12 * font_scale, alpha=0.75, ) ax.margins(0, 0) ax.set_axis_off() ax.xaxis.set_major_locator(plt.NullLocator()) ax.yaxis.set_major_locator(plt.NullLocator()) plt.subplots_adjust(top=1, bottom=0, right=1, left=0, hspace=0, wspace=0) if title is not None: t = axs[0].annotate( title, xy=(1, 1), xycoords="axes fraction", fontsize=20 * font_scale, xytext=(-5, -5), textcoords="offset points", ha="right", va="top", color="white", ) t.set_bbox(dict(facecolor="black", alpha=0.5, edgecolor="black")) def generate_chord_dataset( max_voices: int = 8, sample_rate: int = 44100, num_items: int = 5, duration: float = 1.0, min_note: str = "C2", max_note: str = "C6", output_dir: Path = "chords", ): """ Generates a toy multitrack dataset of chords, synthesized from sine waves. Parameters ---------- max_voices : int, optional Maximum number of voices in a chord, by default 8 sample_rate : int, optional Sample rate of audio, by default 44100 num_items : int, optional Number of items to generate, by default 5 duration : float, optional Duration of each item, by default 1.0 min_note : str, optional Minimum note in the dataset, by default "C2" max_note : str, optional Maximum note in the dataset, by default "C6" output_dir : Path, optional Directory to save the dataset, by default "chords" """ import librosa from . import AudioSignal from ..data.preprocess import create_csv min_midi = librosa.note_to_midi(min_note) max_midi = librosa.note_to_midi(max_note) tracks = [] for idx in range(num_items): track = {} # figure out how many voices to put in this track num_voices = random.randint(1, max_voices) for voice_idx in range(num_voices): # choose some random params midinote = random.randint(min_midi, max_midi) dur = random.uniform(0.85 * duration, duration) sig = AudioSignal.wave( frequency=librosa.midi_to_hz(midinote), duration=dur, sample_rate=sample_rate, shape="sine", ) track[f"voice_{voice_idx}"] = sig tracks.append(track) # save the tracks to disk output_dir = Path(output_dir) output_dir.mkdir(exist_ok=True) for idx, track in enumerate(tracks): track_dir = output_dir / f"track_{idx}" track_dir.mkdir(exist_ok=True) for voice_name, sig in track.items(): sig.write(track_dir / f"{voice_name}.wav") all_voices = list(set([k for track in tracks for k in track.keys()])) voice_lists = {voice: [] for voice in all_voices} for track in tracks: for voice_name in all_voices: if voice_name in track: voice_lists[voice_name].append(track[voice_name].path_to_file) else: voice_lists[voice_name].append("") for voice_name, paths in voice_lists.items(): create_csv(paths, output_dir / f"{voice_name}.csv", loudness=True) return output_dir